Abstract

In this study, it is aimed to conduct the thermodynamic and economic analysis of solar thermal power plants using parabolic trough collectors (PTC), linear Fresnel reflectors (LFR), and solar tower (ST) technologies for Cameroon. The analysis is performed for each power plant with the installed capacity of 5 MWe. Initial investment costs for the solar thermal power plants using PTC, LFR, and ST technologies are estimated to be 33.49 Million USD, 18.77 Million USD, and 36.31 Million USD, while levelized costs of electricity (LCOE) are found to be varying from 145.6 USD/MWh to 186.8 USD/MWh, 112.2 USD/MWh to 154.2 USD/MWh, and 179.2 USD/MWh to 220.4 USD/MWh, respectively. For the solar thermal power plants using PTC, LFR, and ST technologies, payback periods are obtained to be 6.57 years, 6.84 years, and 6.02 years, and also, internal rates on the return are calculated to be 21.03%, 20.42%, and 22.47%, respectively. Overall energy and exergy efficiency values are found to be 13.39% and 14.37%; 11.90% and 13.74%; 12.13% and 13.64% for the solar thermal power plants using PTC, LFR, and ST technologies, respectively. In conclusion, it is seen that LFR technology presents the best performance with the combination of thermodynamic and economic metrics for the deployment of solar thermal power plants in the countries in sub-Saharan Africa like Cameroon.

References

References
1.
NREL
,
2019
, “
Concentrating Solar Power
”,
National Renewable Energy Laboratory
, https://solarpaces.nrel.gov/andasol-1, Accessed June 23, 2019.
2.
Ahmadi
,
M. H.
,
Ghazvini
,
M.
,
Sadeghzadeh
,
M.
,
Nazari
,
M.
,
Kumar
,
R.
,
Naeimi
,
A.
, and
Mingh
,
T.
,
2018
, “
Solar Power Technology for Electricity Generation: A Critical Review
,”
Energy Sci. Eng.
,
6
(
5
), pp.
340
361
. 10.1002/ese3.239
3.
IEA
,
2010
,
Technology Roadmap—Concentrating Solar Power
,
International Energy Agency
,
Paris, France
, https://webstore.iea.org/download/direct/793?fileName=csp_roadmap.pdf, Accessed March 10, 2020.
4.
Feldhoff
,
J. F.
,
Schmitz
,
K.
,
Eck
,
M.
,
Schnatbaum-Laumann
,
L.
,
Laing
,
D.
,
Ortiz-Vives
,
F.
, and
Schulte-Fischedick
,
J.
,
2012
, “
Comparative System Analysis of Direct Steam Generation and Synthetic Oil Parabolic Trough Power Plants With Integrated Thermal Storage
,”
Sol. Energy
,
86
(
1
), pp.
520
530
. 10.1016/j.solener.2011.10.026
5.
Lukas
,
H.
,
2013
, “
Literature Review on Heat Transfer Fluids and Thermal Energy Storage Systems in CSP Plants
”,
Solar Thermal Energy Research Group (STERG) Report, Stellenbosch University
, http://sterg.sun.ac.za/wp-content/uploads/2011/08/HTF_TESmed_Review_2013_05_311.pdf, Accessed December 13, 2019.
6.
Benoit
,
H.
,
Spreafico
,
L.
,
Gauthier
,
D.
, and
Flamant
,
G.
,
2016
, “
Review of Heat Transfer Fuids in Tube-Receivers Used in Concentrating Solar Thermal Systems: Properties and Heat Transfer Coefficients
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
298
315
. 10.1016/j.rser.2015.10.059
7.
Yu-Ting
,
W.
,
Chen
,
C.
,
Liu
,
B.
, and
Ma
,
C. F.
,
2012
, “
Investigation on Forced Convective Heat Transfer of Molten Salts in Circular Tubes
,”
Int. Communications Heat Mass Transfer
,
39
(
10
), pp.
1550
1555
. 10.1016/j.icheatmasstransfer.2012.09.002
8.
Taylor
,
R.
,
Phelan
,
P.
,
Otanicar
,
T.
,
Walker
,
C.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High flux Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
3
(
23104
), pp.
1
15
. 10.1063/1.3571565
9.
Becker
,
M.
,
1980
, “
Comparison of Heat Transfer Fluids for Use in Solar Thermal Power Stations
,”
Electric Power Syst. Res.
,
3
(
3–4
), pp.
139
150
. 10.1016/0378-7796(80)90001-2
10.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
T. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
. 10.1016/j.applthermaleng.2016.11.201
11.
Malika
,
O.
,
Abdallahand
,
K.
, and
Larbi
,
L.
,
2013
, “
Estimation of the Temperature, Heat Gain and Heat Loss by Solar Parabolic Trough Collector Under Algerian Climate Using Different Thermal Oils
,”
Energy Convers. Manage.
,
75
, pp.
191
201
. 10.1016/j.enconman.2013.06.011
12.
Feldhoff
,
J. F.
,
Benitez
,
D.
,
Eck
,
M.
, and
Riffelmann
,
K. J.
,
2010
, “
Economic Potential of Solar Thermal Power Plants With Direct Steam Generation Compared With HTF Plants
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041001
. pp.
1
9
. 10.1115/1.4001672
13.
Du
,
E.
,
Zhang
,
N.
,
Hodge
,
B.-M.
,
Kang
,
C.
,
Kroposki
,
B.
, and
Xia
,
Q.
,
2018
, “
Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems
,”
Appl. Energy
,
222
, pp.
649
661
. 10.1016/j.apenergy.2018.03.161
14.
Zhuang
,
X.
,
Xinhai
,
X.
,
Wenrui
,
L.
, and
Wenfu
,
X.
,
2019
, “
LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China
,”
Energies
,
12
(
7
), p.
1394
. p.
1
17
. 10.3390/en12071394
15.
Achkari
,
O.
, and
Fadar
,
A. E.
,
2020
, “
Latest Developments on TES and CSP Technologies—Energy and Environmental Issues, Applications and Research Trends
,”
Appl. Therm. Eng.
,
167
, p.
114806
. 10.1016/j.applthermaleng.2019.114806
16.
Agyekum
,
E. B.
, and
Velkin
,
V. I.
,
2020
, “
Optimization and Techno-Economic Assessment of Concentrated Solar Power (CSP) in South-Western Africa: A Case Study on Ghana
,”
Sustainable Energy Technol. Assess.
,
40
, p.
100763
. 10.1016/j.seta.2020.100763
17.
Islam
,
M. T.
,
Huda
,
N.
, and
Saidur
,
R.
,
2019
, “
Current Energy Mix and Techno-Economic Analysis of Concentrating Solar Power (CSP) Technologies in Malaysia
,”
Renewable Energy
,
140
, pp.
789
806
. 10.1016/j.renene.2019.03.107
18.
Giostri
,
A.
,
Binotti
,
M.
,
Silva
,
P.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2013
, “
Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011001
. 10.1115/1.4006792
19.
Dieckman
,
S.
,
Dersch
,
J.
,
Giuliano
,
S.
,
Puppe
,
M.
,
Lüpfert
,
E.
,
Hennecke
,
K.
,
Pitz-Paal
,
R.
,
Taylor
,
M.
, and
Ralon
,
P.
,
2016
, “
LCOE Reduction Potential of Parabolic Trough and Solar Tower CSP Technology Until 2025
,”
AIP Conf. Proc.
,
1850
(
160004
), pp.
1
8
. 10.1063/1.4984538
20.
Aly
,
A.
,
Bernardos
,
A.
,
Fernandez-Peruchena
,
C.
,
Jensen
,
M.
,
Pedersen
,
S. S.
, and
B
,
A.
,
2019
, “
Is Concentrated Solar Power (CSP) A Feasible Option for Sub-Saharan Africa?: Investigating the Techno-Economic Feasibility of CSP in Tanzania
,”
Renewable Energy
,
135
, pp.
1224
1240
. 10.1016/j.renene.2018.09.065
21.
Hirbodi
,
K.
,
Enjavi-Arsanjani
,
M.
, and
Yaghoubi
,
M.
,
2020
, “
Techno-Economic Assessment and Environmental Impact of Concentrating Solar Power Plants in Iran
,”
Renewable Sustainable Energy Rev.
,
120
, p.
109642
. 10.1016/j.rser.2019.109642
22.
Republique du Cameroun, Ministère des Mines de l’Eau et de l’Energie, Agence canadienne de developpement international
,
1990
, ‘’
Etude du Plan Energé­tique National Phase I
‘’,
Lavalin International Inc., Montréal, Cameroun
, https://rise.esmap.org/data/files/library/cameroon/Renewable%20Energy/RE%209.2-National%20Energetic%20Plan%20.pdf, Accessed December 6, 2019.
23.
Lighting Africa—IFC and WB, African Renewable Energy Access Program (AFREA) and Public—Private Infrastructure Advisory Facility (PPIAF)
,
2012
, “
Lighting Africa Policy Report Note—Cameroon
”, https://www.lightingafrica.org/wp-content/uploads/2016/07/28_Cameroon-FINAL-August-2012_LM.pdf, Accessed December 6, 2019.
24.
IEA
,
2019
, “
Number of People Without Access to Electricity in Sub-Saharan Africa in the STEPS
”,
International Energy Agency
, https://www.iea.org/data-and-statistics/charts/number-of-people-without-access-to-electricity-in-sub-saharan-africa-in-the-steps, Accessed December 6, 2019.
25.
Abaza
,
M. A.
,
El-Maghlany
,
W. M.
,
Hassab
,
M.
, and
Abulfotuh
,
F.
,
2020
, “
10 MW Concentrated Solar Power (CSP) Plant Operated by 100% Solar Energy: Sizing and Techno-Economic Optimization
,”
Alexandria Eng. J.
,
59
(
1
), pp.
39
47
. 10.1016/j.aej.2019.12.005
26.
Wagner
,
M. J.
, and
Zhu
,
G.
,
2011
, ‘’
Generic CSP Performance Model for NREL’s System Advisor Model
’’,
NREL Report No. CP-5500-52473
,
10
p., http://www.nrel.gov/docs/fy11osti/52473.pdf, Accessed December 10, 2019.
27.
Wagner
,
M. J.
,
Hamilton
,
W. T.
,
Newman
,
A.
,
Dent
,
J.
,
Diep
,
C.
, and
Braun
,
R.
,
2018
, “
Optimizing Dispatch for a Concentrated Solar Power Tower
,”
Sol. Energy
,
14
, pp.
1198
1211
. 10.1016/j.solener.2018.06.093
28.
Wagner
,
M. J.
, and
Gilman
,
P.
,
2011
, “
Technical Manual for the SAM Physical Trough Model
”,
NREL Report No. TP-5500-51825
;
2011
;
124
p., http://www.nrel.gov/docs/fy11osti/51825.pdf, Accessed December 30, 2019.
29.
SAM
,
2017
,
SAM 17.9.5 Software, System Advisor Model
,
National Renewable Energy Laboratory
,
Golden, CO
, https://sam.nrel.gov/, Accessed March 12, 2019.
30.
Meteonorm 7.2 Software
,
2017
,
Global Weather Data, AIGUASOL
, https://aiguasol.coop/energy-software/meteonorm-global-weather-data/, Accessed March 12, 2019.
31.
Biboum
,
A. C.
, and
Yilanci
,
A.
,
2020
, “
Comparative Techno-Economic Study of Solar Thermal Power Plants With Various Capacities: A Case for the Northern Part of Cameroon
,”
Eur. Mech. Sci.
,
4
(
1
), pp.
12
22
. 10.26701/ems.493214
32.
NREL
,
2019
, “
Concentrating Solar Power
”,
National Renewable Energy Laboratory
, https://solarpaces.nrel.gov/solar-electric-generating-station-i, Accessed June 20, 2019.
33.
NREL
,
2019
, “
Concentrating Solar Power
”,
National Renewable Energy Laboratory
, https://solarpaces.nrel.gov/thai-solar-energy-1, Accessed June 20, 2019.
34.
Zare
,
V.
, and
Hasanzadeh
,
M.
,
2016
, “
Energy and Exergy Analysis of a Closed Brayton Cycle-Based Combined Cycle for Solar Power Tower Plants
,”
Energy Convers. Manage.
,
128
, pp.
227
237
. 10.1016/j.enconman.2016.09.080
35.
NREL
,
2003
, “
Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Forecasts
”,
National Renewable Energy Laboratory, Sargent and Lundy LLC Consulting Group, Forecasts Report, NREL/SR—550–35060
.
36.
Werner
,
V.
, and
Henry
,
K.
,
2010
, “
Large—Scale Solar Thermal Power Technologies, Cost and Development
”,
Wiley—VCH Verlag GmbH&Co. KGaA
.
37.
NREL
,
2019
, “
Concentrating Solar Power
”,
National Renewable Energy Laboratory
, https://solarpaces.nrel.gov/liddell-power-station, Accessed June 23, 2019.
38.
NREL
,
2019
, “
Concentrating Solar Power
”,
National Renewable Energy Laboratory
, https://solarpaces.nrel.gov/sierra-suntower, Accessed June 23, 2019.
39.
IRENA
,
2019
, “
Renewable Power Generation Costs in 2018
”,
International Renewable Energy Agency
, pp.
1
88
. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf, Accessed June 23, 2019.
40.
Parrado
,
C.
,
Marzo
,
A.
,
Fuentealba
,
E.
, and
Fernández
,
A.
,
2016
, “
2050 LCOE Improvement Using New Molten Salts for Thermal Energy Storage in CSP Plants
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
505
514
. 10.1016/j.rser.2015.12.148
41.
Abdelhady
,
S.
,
Borello
,
D.
, and
Shaban
,
A.
,
2018
, “
Techno-economic Assessment of Biomass Power Plant Fed With Rice Straw: Sensitivity and Parametric Analysis of the Performance and the LCOE
,”
Renewable Energy
,
115
, pp.
1026
1034
. 10.1016/j.renene.2017.09.040
42.
Malek
,
A.
,
Hasanuzzaman
,
M.
,
Rahim
,
N. A.
, and
Al Turki
,
Y. A.
,
2017
, “
Techno-Economic Analysis and Environmental Impact Assessment of a 10 MW Biomass-Based Power Plant in Malaysia
,”
J. Cleaner Prod.
,
141
, pp.
502
513
. 10.1016/j.jclepro.2016.09.057
43.
Dowling
,
A. W.
,
Zheng
,
T.
, and
Zavala
,
V. M.
,
2017
, “
Economic Assessment of Concentrated Solar Power Technologies: A Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1019
1032
. 10.1016/j.rser.2017.01.006
44.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley and Sons, Inc.
,
New York
.
45.
Biboum
,
A. C.
, and
Yilanci
,
A.
,
2020
, “
Advanced Exergoeconomic Analysis of Solar-Biomass Hybrid Systems for Multi-Energy Generation
,”
Int. J. Exergy
,
33
(
1
), pp.
1
27
. 10.1504/IJEX.2020.109621
46.
Biboum
,
A. C.
,
Mwanza
,
M.
, and
Yilanci
,
A.
,
2017
, “
Performances Analysis of Combined Rankine and Absorption Refrigeration Cycles for a Small Size Solar Power Plant
,”
IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry
,
ISES Solar World Congress
, pp.
1
12
.
47.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
. 10.1115/1.3687092
48.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
. 10.1016/S0038-092X(03)00226-3
49.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
. 10.1016/j.pecs.2016.05.002
50.
Torres-Reyes
,
E.
,
Cervantes de Gortari
,
J. G.
,
Ibarra-Salazar
,
B. A.
, and
Picon-Nunez
,
M.
,
2001
, “
A Design Method of Flat-Plate Solar Collectors Based on Minimum Entropy Generation
,”
Exergy, An Int. J.
,
1
(
1
), pp.
46
52
. 10.1016/S1164-0235(01)00009-7
51.
Omid
,
K. S.
,
Mohsen
,
S. B.
, and
Hassanzadeh
,
A.
,
2018
, “
Energy and Exergy Analysis of Parabolic Trough Collectors
,”
Int. J. Heat Technol.
,
36
(
1
), pp.
147
158
. 10.18280/ijht.360120
52.
Vogel
,
W.
, and
Kalb
,
H.
,
2010
,
Large—Scale Solar Thermal Power Technologies, Cost and Development
,
John Wiley & Sons
,
New York
.
53.
Couper
,
J. R.
,
Penney
,
W. R.
,
Fair
,
J. R.
, and
Walas
,
S. M.
,
2012
,
Chemical Process Equipment, Selection and Design
, 3rd ed.,
Butterworth-Heinemann Imprint
,
Oxford, UK
.
54.
Dincer
,
I.
, and
Ratlamwala
,
T. A. H.
,
2016
,
Integrated Absorption Refrigeration Systems-Comparative Energy and Exergy Analyses
,
Green Energy and Technology Series, Springer International Publishing
,
Switzerland
.
55.
IRENA
,
2016
, “
The Power to Change: Solar and Wind Cost Reduction Potential to 2025
,”
International Renewable Energy Agency
, pp.
1
112
. https://www.irena.org/media/Files/IRENA/Agency/Publication/2016/IRENA_Power_to_Change_2016.pdf, Accessed June 23, 2019.
56.
Abid
,
M.
,
Khan
,
M. S.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Thermodynamic Performance Evaluation of a Solar Parabolic Dish Assisted Multigeneration System
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061014
. 10.1115/1.4044022
57.
Ehtiwesh
,
I. A. S.
,
Coelho
,
M. C.
, and
Sousa
,
A. C. M.
,
2016
, “
Exergetic and Environmental Life Cycle Assessment Analysis of Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
145
155
. 10.1016/j.rser.2015.11.066
You do not currently have access to this content.