Abstract

Concentrating solar power (CSP) development has focused on increasing the energy conversion efficiency and lowering the capital cost. To improve performance, CSP research is moving to high-temperature and high-efficiency designs. One technology approach is to use inexpensive, high-temperature heat transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (sCO2) Brayton power cycle. The sCO2 Brayton power cycle has strong potential to achieve performance targets of 50% thermal-to-electric efficiency and dry cooling at an ambient temperature of up to 40 °C and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat transfer or storage medium that is inexpensive and stable at high temperatures above 1000 °C. The particle/sCO2 heat exchanger (HX) provides a connection between the particles and sCO2 fluid in emerging sCO2 power cycles. This article presents heat transfer modeling to analyze the particle/sCO2 HX design and assess design tradeoffs including the HX cost. The heat transfer process was modeled based on a particle/sCO2 counterflow configuration, and empirical heat transfer correlations for the fluidized bed and sCO2 were used to calculate heat transfer area and estimate the HX cost. A computational fluid dynamics simulation was applied to characterize particle distribution and fluidization. This article shows a path to achieve the cost and performance objectives for a particle/sCO2 HX design by using fluidized-bed technology.

References

References
1.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
,
“Concentrating Solar Power Gen3 Demonstration Roadmap,” NREL/TP-5500-67464
, pp.
1
140
.
2.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
. 10.1115/1.4027262,
3.
Stoddard
,
L.
,
Andrew
,
D.
,
Adam
,
S.
, and
Galluzzo
,
G.
,
2016
. “
Falling Particles: Concept Definition and Capital Cost Estimate, B&V Project No. 042839
,”
Black & Veatch Report to the U.S. Department of Energy
, https:/www.osti.gov/servlets/purl/1335155
4.
Stoddard
,
L.
,
Andrew
,
D.
,
Adam
,
S.
, and
Galluzzo
,
G.
,
2016
. “
Molten Salt—Concept Definition & Capital Cost Estimate, B&V PROJECT NO. 042839
,”
Black & Veatch Report to the U.S. Department of Energy
, https:/www.osti.gov/servlets/purl/1335150
5.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
. 10.1115/1.4024030
6.
Gifford
,
J.
,
Ma
,
Z.
, and
Davenport
,
P.
,
2020
, “
Thermal Analysis of Insulation Design for a Thermal Energy Storage Silo Containment for Long-Duration Electricity Storage
,”
Front. Energy Res.
,
8
, pp.
1
12
. 10.3389/fenrg.2020.00099
7.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Design and Operating Considerations for a Shell-and-Plate, Moving Packed-Bed, Particle-to-SCO2 Heat Exchanger
,”
Sol. Energy
,
178
, pp.
331
340
. 10.1016/j.solener.2018.11.065
8.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Energy Procedia
,
69
, pp.
748
757
. 10.1016/j.egypro.2015.03.085
9.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
Butterworth-Heinemann
,
Boston, MA
.
10.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
. 10.1016/j.powtec.2004.11.035
11.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2018
, “
High-Temperature Flow Testing and Heat Transfer for a Moving Packed-Bed Particle/sCO2 Heat Exchanger
,”
AIP Conf. Proc.
,
2033
, p.
040003
. 10.1063/1.5067039
12.
Bartsch
,
P.
,
Baumann
,
T.
, and
Zunft
,
S.
,
2016
, “
Granular Flow Field in Moving Bed Heat Exchangers: A Continuous Model Approach
,”
Energy Procedia
,
99
, pp.
72
79
. 10.1016/j.egypro.2016.10.099
13.
Miller
,
D. C.
,
Pfutzner
,
C. J.
, and
Jackson
,
G. S.
,
2018
, “
Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage
,”
Int. J. Heat Mass Transf.
,
126
, pp.
730
745
10.1016/j.ijheatmasstransfer.2018.05.165.
14.
Borodulya
,
V. A.
,
Teplitsky
,
Y. S.
,
Markevich
,
I. I.
,
Hassan
,
A. F.
, and
Yeryomenko
,
T. P.
,
1991
, “
Heat Transfer Between a Surface and a Fluidized Bed: Consideration of Pressure and Temperature Effects
,”
Int. J. Heat Mass Transf.
,
34
(
1
), pp.
47
53
. 10.1016/0017-9310(91)90171-A
15.
Chen
,
J. C.
,
2003
, “
Surface Contact—Its Significance for Multiphase Heat Transfer: Diverse Examples
,”
ASME J. Heat Transf.
,
125
(
4
), pp.
549
566
. 10.1115/1.1566050
16.
Ho
,
C. K.
,
Carlson
,
M.
, and
Albrecht
,
K. J.
,
2018
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-SCO2 Heat Exchanger
,”
Proceedings of the ASME 2018 Power and Energy Conference
,
Lake Buena Vista, FL
,
June 24–28
, p.
V001T11A007
.
17.
Morris
,
A. B.
,
Ma
,
Z.
,
Pannala
,
S.
, and
Hrenya
,
C. M.
,
2016
, “
Simulations of Heat Transfer to Solid Particles Flowing Through an Array of Heated Tubes
,”
Sol. Energy
,
130
, pp.
101
115
. 10.1016/j.solener.2016.01.033
18.
Morris
,
A. B.
,
Pannala
,
S.
,
Ma
,
Z.
, and
Hrenya
,
C. M.
,
2015
, “
A Conductive Heat Transfer Model for Particle Flows Over Immersed Surfaces
,”
Int. J. Heat Mass Transf.
,
89
, pp.
1277
1289
10.1016/j.ijheatmasstransfer.2015.06.004.
19.
Ho
,
C. K.
,
Carlson
,
M.
,
Albrecht
,
K. J.
,
Ma
,
Z.
,
Jeter
,
S.
, and
Nguyen
,
C. M.
,
2019
, “
Evaluation of Alternative Designs for a High Temperature Particle-to-SCO2 Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021001
. 10.1115/1.4042225
20.
Golob
,
M.
,
Nguyen
,
C.
,
Jeter
,
S.
,
Abdel-khalik
,
S.
, and
Ho
,
C.
,
2019
, “
Flowing Particle Fluidized Bath Design and Heat Transfer
,”
Proceedings of the ASME 2019 13th International Conference on Energy Sustainability
,
Bellevue, WA
, p.
V001T03A010
.
21.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
22.
Ozkaynak
,
T. F.
, and
Chen
,
J. C.
,
1980
, “
Emulsion Phase Residence Time and Its Use in Heat Transfer Models in Fluidized Beds
,”
AIChE J
,
26
(
4
), pp.
544
550
. https://doi.org/10.1002/aic.690260404
23.
Martinek
,
J.
, and
Ma
,
Z.
,
2015
, “
Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051008
. 10.1115/1.4030970 10.1115/ES2014-6393
24.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization
,
Academic Press
,
Boston, MA
.
25.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transf.
,
21
(
4
), pp.
467
476
. 10.1016/0017-9310(78)90080-7
26.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
. 10.1002/aic.690360404
27.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T. J.
,
1993
,
MFIX User Manual
,
MFIX Documentation: Theory Guide, U.S. Department of Energy, Morgantown Energy Technology Center
,
Morgantown, WV
.
28.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization
,
Brisbane, Australia
,
May 3–8
, pp.
75
82
.
29.
Schaeffer
,
D. G.
,
1987
, “
Instability in the Evolution-Equations Describing Incompressible Antigranulocytes Flow
,”
J. Differ. Equ.
,
66
(
1
), pp.
19
50
. 10.1016/0022-0396(87)90038-6
30.
Kuipers
,
J. A. M.
,
Prins
,
W.
, and
Van Swaaij
,
W. P. M.
,
1992
, “
Numerical Calculation of Wall-to-bed Heat-Transfer Coefficients in Gas-Fluidized Beds
,”
AIChE J.
,
38
(
7
), pp.
1079
1091
. 10.1002/aic.690380711
31.
Patil
,
D. J.
,
Smit
,
J.
,
Van Sint Annaland
,
M.
, and
Kuipers
,
J. A. M.
,
2006
, “
Wall-to-Bed Heat Transfer in Gas-Solid Bubbling Fluidized Beds
,”
AIChE J.
,
52
(
1
), pp.
58
74
. 10.1002/aic.10590
32.
Zehner
,
P.
, and
Schlünder
,
E. U.
,
1970
, “
Warmeleitfahigkeit von Schuttungen bei mässigen Temperaturen
,”
Chemie Ingenieur Technik
,
42
, pp.
933
941
.
33.
Van Antwerpen
,
W.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(
7
), pp.
1803
1818
. 10.1016/j.nucengdes.2010.03.009
34.
Yusuf
,
R.
,
Halvorsen
,
B.
, and
Melaaen
,
M. C.
,
2012
, “
An Experimental and Computational Study of Wall to Bed Heat Transfer in a Bubbling Gas-Solid Fluidized Bed
,”
Int. J. Multiph. Flow
,
42
, pp.
9
23
10.1016/j.ijmultiphaseflow.2012.01.003.
35.
Schmidt
,
A.
, and
Renz
,
U.
,
2000
, “
Numerical Prediction of Heat Transfer in Fluidized Beds by a Kinetic Theory of Granular Flows
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
871
885
. 10.1016/S1290-0729(00)01193-5
36.
Legawiec
,
B.
, and
Ziólkowski
,
D.
,
1994
, “
Structure, Voidage and Effective Thermal Conductivity of Solids Within Near-Wall Region of Beds Packed With Spherical Pellets in Tubes
,”
Chem. Eng. Sci.
,
49
(
15
), pp.
2513
2520
. 10.1016/0009-2509(94)E0070-7
37.
Yusuf
,
R.
,
Halvorsen
,
B.
, and
Melaaen
,
M. C.
,
2011
, “
Eulerian-Eulerian Simulation of Heat Transfer Between a Gas-Solid Fluidized Bed and an Immersed Tube-Bank With Horizontal Tubes
,”
Chem. Eng. Sci.
,
66
(
8
), pp.
1550
1564
. 10.1016/j.ces.2010.12.015
38.
Gunn
,
D. J.
, and
Hilal
,
N.
,
1997
, “
The Expansion of Gas-Fluidised Beds in Bubbling Fluidisation
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2811
2822
. 10.1016/S0009-2509(97)00051-1
39.
Vreedenberg
,
H. A.
,
1958
, “
Heat Transfer Between a Fluidized Bed and a Horizontal
,”
Chem. Eng. Sci.
,
9
(
1
), pp.
52
60
. 10.1016/0009-2509(58)87007-4
40.
Andeen
,
B. R.
, and
Glicksman
,
L. R.
,
1976
, “
Heat Transfer to Horizontal Tubes in Shallow Fluidized Beds
,”
ASME-AIChE Heat Transfer Conference
,
ASME Paper number 76-HT-67
.
41.
Gelperin
,
N. I.
,
Kruglikov
,
V. Y.
, and
Ainshtein
,
V. G.
,
1966
, “
Heat Transfer Between a Fluidized Bed and a Surface
,”
Internatioal Chem. Eng.
,
6
, pp.
67
73
.
42.
Petrie
,
J. C.
,
Freeby
,
W. A.
, and
Buckham
,
J. A.
,
1968
, “
In-Bed Heat Exchanger
,”
Chem. Eng. Prog. Symp. Ser.
,
6
, pp.
45
51
.
43.
Grewal
,
N. S.
, and
Saxena
,
S. C.
,
1980
, “
Heat Transfer Between a Horizontal Tube and a Gas-Solid Fluidized Bed
,”
Int. J. Heat Mass Transf.
,
23
(
11
), pp.
1505
1519
. 10.1016/0017-9310(80)90154-4
44.
Kim
,
S. W.
,
Ahn
,
J. Y.
,
Kim
,
S. D.
, and
Lee
,
D. H.
,
2003
, “
Heat Transfer and Bubble Characteristics in a Fluidized Bed With Immersed Horizontal Tube Bundle
,”
Int. J. Heat Mass Transf.
,
46
(
3
), pp.
399
409
. 10.1016/S0017-9310(02)00296-X
45.
Masoumifard
,
N.
,
Mostoufi
,
N.
,
Hamidi
,
A. A.
, and
Sotudeh-Gharebagh
,
R.
,
2008
, “
Investigation of Heat Transfer Between a Horizontal Tube and Gas-Solid Fluidized Bed
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1504
1511
. 10.1016/j.ijheatfluidflow.2008.06.004
46.
Carlson
,
M. D.
,
Middleton
,
B. M.
, and
Ho
,
C. K.
,
2017
, “
Techno-Economic Comparison of Solar-Driven sCO2 Brayton Cycles Using Component Cost Models Baselined With Vendor Data
,”
Proceedings of the ASME 2017 Power and Energy Conference
,
Charlotte, NC
,
June 26–30
, p.
V001T05A009
.
You do not currently have access to this content.