Abstract

The abundant spatial and temporal availability of solar energy has been fueling many researches and have been the reason for the proliferation of solar energy applications in the past decades. Many of these applications involve heavy investments and thus require highly accurate and reliable long-term average solar data for efficient deployment of solar energy technologies. Since ground stations are costly, site-specific, scarce and cannot provide long-term solar data, satellite-derived data is the next best alternative. However, satellite models are often unable to capture the complex local climatological variations of a given site. As such, short-term high precision solar ground measurements are used to train the satellite model so as to improve the accuracy of long-term solar estimates. There exist several site adaptation techniques to perform this task. However, to the knowledge of the researchers, no comparative study has been conducted to establish which site adaptation technique is the most effective. In this study, a robust methodology has been proposed to compare the effectiveness of four site adaptation techniques for monthly and yearly data sets using novel key performance indicators. Ground measurements from 12 stations in the tropical islands of Mauritius, Rodrigues, and Agalega were used to adapt satellite data obtained from HelioClim-3 database using different techniques. Three new nonlinear site adaptation techniques have been proposed: adjustment technique (Technique 2), compensation technique (Technique 3), and relationship technique (Technique 4). The first part of the study showed that 67–100% of the data sets were best approximated with sixth-order polynomials for the three nonlinear techniques. The second part revealed that Technique 1 (linear method) and Technique 2 were most appropriate for maximum and average data sets, respectively. The results were such that Technique 2 and Technique 1 provided best approximations for77.9–83.3% and 40.7–58.3% of average and maximum data sets, respectively. In the third part of the study, only Technique 2 provided remarkable improvements for all statistical metrics with respect to the original monthly data sets (113–118 data sets). The analysis reported 57.6–89.9%, 49.8–68.0%, 67.4–87.3%, 53.8–63.1%, 45.0–64.0%, 7.7–9.6% and 2.7–4.7% mean improvements for mean bias error (MBE), mean absolute bias error (MABE), mean percentage error (MPE), mean absolute percentage error (MAPE), root-mean-square error (RMSE), Nash–Sutcliffe (NSE), and coefficient of determination (COD), respectively, for Technique 2. Similar results were observed for yearly average data sets while the appreciation was shared among all four techniques for yearly maximum data sets, with Technique 1 having a slight advantage.

References

References
1.
Moradi
,
I.
,
2009
, “
Quality Control of Global Solar Radiation Using Sunshine Duration Hours
,”
Energy
,
34
(
1
), pp.
1
6
. 10.1016/j.energy.2008.09.006
2.
Moreno-Tejera
,
S.
,
Ramírez-Santigosa
,
L.
, and
Silva-Pérez
,
M. A.
,
2015
, “
A Proposed Methodology for Quick Assessment of Timestamp and Quality Control Results of Solar Radiation Data
,”
Renewable Energy
,
78
, pp.
531
537
. 10.1016/j.renene.2015.01.031
3.
Ruiz-Arias
,
J. A.
,
Quesada-Ruiz
,
S.
,
Fernández
,
E. F.
, and
Gueymard
,
C. A.
,
2015
, “
Optimal Combination of Gridded and Ground-Observed Solar Radiation Data for Regional Solar Resource Assessment
,”
Sol. Energy
,
112
, pp.
411
424
. 10.1016/j.solener.2014.12.011
4.
Urraca
,
R.
,
Gracia-Amillo
,
A. M.
,
Huld
,
T.
,
Martinez-de-Pison
,
F. J.
,
Trentmann
,
J.
,
Lindfors
,
A. V.
,
Riihelä
,
A.
, and
Sanz-Garcia
,
A.
,
2017
, “
Quality Control of Global Solar Radiation Data With Satellite-Based Products
,”
Sol. Energy
,
158
, pp.
49
62
. 10.1016/j.solener.2017.09.032
5.
Polo
,
J.
,
Wilbert
,
S.
,
Ruiz-Arias
,
J. A.
,
Meyer
,
R.
,
Gueymard
,
C. A.
,
Súri
,
M.
,
Martín
,
L.
,
Mieslinger
,
T.
,
Blanc
,
P.
,
Grant
,
I.
,
Boland
,
J.
,
Ineichen
,
P.
,
Remund
,
J.
,
Escobar
,
R.
,
Troccoli
,
A.
,
Sengupta
,
M.
,
Nielsen
,
K. P.
,
Renne
,
D.
,
Geuder
,
N.
, and
Cebecauer
,
T.
,
2016
, “
Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets
,”
Sol. Energy
,
132
, pp.
25
37
. 10.1016/j.solener.2016.03.001
6.
Mieslinger
,
T.
,
Ament
,
F.
,
Chhatbar
,
K.
, and
Meyer
,
R.
,
2014
, “
A New Method for Fusion of Measured and Model-Derived Solar Radiation Time-Series
,”
Energy Proc.
,
48
, pp.
1617
1626
. 10.1016/j.egypro.2014.02.182
7.
Schumann
,
K.
,
Beyer
,
H. G.
,
Chhatbar
,
K.
, and
Meyer
,
R.
,
2011
, “
Improving Satellite-Derived Solar Resource Analysis With Parallel Ground-Based Measurements
,”
International Solar Energy Society Solar World Congress Proceedings
,
Kassel, Germany
,
Aug. 28–Sept. 2
.
8.
Aguiar
,
L. M.
,
Polo
,
J.
,
Vindel
,
J. M.
, and
Oliver
,
A.
,
2019
, “
Analysis of Satellite Derived Solar Irradiance in Islands With Site Adaptation Techniques for Improving the Uncertainty
,”
Renewable Energy
,
135
, pp.
98
107
. 10.1016/j.renene.2018.11.099
9.
Bender
,
G.
,
Davidson
,
F.
,
Eichelberger
,
F.
, and
Gueymard
,
C. A.
,
2011
, “
The Road to Bankability: Improving Assessments for More Accurate Financial Planning
,”
Solar 2011 Conference Proceedings
,
Raleigh, NC
,
May 16–21
.
10.
Cebecauer
,
T.
, and
Suri
,
M.
,
2016
, “
Site-Adaptation of Satellite-Based DNI and GHI Time Series: Overview and SolarGIS Approach
,”
Proceedings of SolarPACES 2015 Conference
,
Cape Town, South Africa
, Vol.
1734
, p.
150002
.
11.
Bojanowski
,
J. S.
,
Vrieling
,
A.
, and
Skidmore
,
A. K.
,
2014
, “
A Comparison of Data Sources for Creating a Long-Term Time Series of Daily Gridded Solar Radiation for Europe
,”
Sol. Energy
,
99
, pp.
152
171
. 10.1016/j.solener.2013.11.007
12.
Eissa
,
Y.
,
Chiesa
,
M.
, and
Ghedira
,
H.
,
2012
, “
Assessment and Recalibration of the Heliosat-2 Method in Global Horizontal Irradiance Modeling Over the Desert Environment of the UAE
,”
Sol. Energy
,
86
(
6
), pp.
1816
1825
. 10.1016/j.solener.2012.03.005
13.
Eissa
,
Y.
,
Korany
,
M.
,
Aoun
,
Y.
,
Boraiy
,
M.
,
Wahab
,
M. M. A.
,
Alfaro
,
S. C.
,
Blanc
,
P.
,
El-Metwally
,
M.
,
Ghedira
,
H.
,
Hungershoefer
,
K.
, and
Wald
,
L.
,
2015
, “
Validation of the Surface Downwelling Solar Irradiance Estimates of the HelioClim-3 Database in Egypt
,”
Remote Sens.
,
7
(
7
), pp.
9269
9291
. 10.3390/rs70709269
14.
Ineichen
,
P.
,
2014
, “
Long Term Satellite Global, Beam and Diffuse Irradiance Validation
,”
Energy Proc.
,
48
, pp.
1586
1596
. 10.1016/j.egypro.2014.02.179
15.
Vindel
,
J. M.
,
Navarro
,
A. A.
,
Valenzuela
,
R. X.
, and
Ramírez
,
L.
,
2016
, “
Temporal Scaling Analysis of Irradiance Estimated From Daily Satellite Data and Numerical Modelling
,”
Atmos. Res.
,
181
, pp.
154
162
. 10.1016/j.atmosres.2016.06.020
16.
Gueymard
,
C. A.
,
2011
, “
Uncertainties in Modeled Direct Irradiance Around the Sahara as Affected by Aerosols: Are Current Datasets of Bankable Quality?
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031024
. 10.1115/1.4004386
17.
Cebecauer
,
T.
, and
Suri
,
M.
,
2012
, “
Correction of Satellite-Derived DNI Time Series Using Locally-Resolved Aerosol Data
,”
Proceedings of: SolarPACES 2012 Conference
,
Marrakech, Morocco
,
Sept. 12
.
18.
Vernay
,
C.
,
Blanc
,
P.
, and
Pitaval
,
S.
,
2013
, “
Characterizing Measurements Campaigns for an Innovative Calibration Approach of the Global Horizontal Irradiation Estimated by HelioClim-3
,”
Renewable Energy
,
57
, pp.
339
347
. 10.1016/j.renene.2013.01.049
19.
Mauritius Meteorological Services
, “
Climate of Mauritius
,” http://metservice.intnet.mu/climate-services/climate-of-mauritius.php
20.
Ramgolam
,
Y. K.
, and
Chiniah
,
A.
,
2019
, “
Innovative Architecture for Dynamic Solar Data Acquisition and Processing: A Case for Mauritius and Outer Islands
,”
Proceedings of 2nd International Conference on Next Generation Computing Applications, IEEE NextComp2019
,
The Ravenala Attitude, Balaclava, MU
,
Sept. 19–20, 2019
.
21.
Blanc
,
P.
,
Gschwind
,
B.
,
Lefèvre
,
M.
, and
Wald
,
L.
,
2011
, “
The HelioClim Project: Surface Solar Irradiance Data for Climate Applications
,”
Remote Sens.
,
3
(
2
), pp.
343
361
. 10.3390/rs3020343
22.
Espinar
,
B.
,
Blanc
,
P.
,
Wald
,
L.
,
Gschwind
,
B.
,
Ménard
,
L.
,
Wey
,
E.
,
Thomas
,
C.
, and
Saboret
,
L.
,
2012
, “
HelioClim-3: A Near-Real Time and Long-Term Surface Solar Irradiance Database
,”
Workshop on “Remote Sensing Measurements for Renewable Energy
”,
Risoe, Denmark
,
May 2012
,
hal-00741564f
.
23.
Solar Radiation Data,
http://www.soda-pro.com/help/helioclim/helioclim-3-overview, Accessed January 11, 2020.
24.
Hammer
,
A.
,
Heinemann
,
D.
,
Hoyer
,
C.
,
Kuhlemann
,
R.
,
Lorenz
,
E.
,
Müller
,
R.
, and
Beyer
,
H.
,
2003
, “
Solar Energy Assessment Using Remote Sensing Technologies
,”
Remote Sens. Environ.
,
86
(
3
), pp.
423
432
. 10.1016/S0034-4257(03)00083-X
25.
Lefèvre
,
M.
,
Albuisson
,
M.
, and
Wald
,
L.
,
2004
, “
Description of the Software Heliosat-2 for the Conversion of Images Acquired by Meteosat Satellites in the Visible Band into Maps of Solar Radiation Available at Ground Level
,”
hal-00867218
.
26.
Rigollier
,
C.
,
Lefèvre
,
M.
, and
Wald
,
L.
,
2004
, “
The Method Heliosat-2 for Deriving Shortwave Solar Radiation From Satellite Images
,”
Sol. Energy
,
77
(
2
), pp.
159
169
. 10.1016/j.solener.2004.04.017
27.
Hoyer-Klick
,
C.
,
Beyer
,
H. G.
,
Dumortier
,
D.
,
Schroedter-Homscheidt
,
M.
,
Wald
,
L.
,
Martinoli
,
M.
,
Schilings
,
C.
,
Gschwind
,
B.
,
Menard
,
L.
,
Gaboardi
,
E.
,
Ramirez-Santigosa
,
L.
,
Polo
,
J.
,
Cebecauer
,
T.
,
Huld
,
T.
,
Suri
,
M.
,
Blas
,
M. D.
,
Lorenz
,
E.
,
Pfatischer
,
R.
,
Remund
,
J.
,
Ineichen
,
P.
,
Tsvetkov
,
A.
, and
Hofierka
,
J.
,
2008
, “
Management and Exploitation of Solar Resource Knowledge
,”
Proceedings of 1st International Conference on Solar Heating, Cooling and Buildings Proceedings, EUROSUN 2008
,
Lisbon, Portugal
, pp.
7
10
, hal-00468443.
28.
NREL
,
1993
, “
Users Manual for SERI QC Software—Assessing the Quality of Solar Radiation Data
,”
Technical Report
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
29.
Long
,
C. N.
, and
Shi
,
Y.
,
2008
, “
An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements
,”
The Open Atmos. Sci. J.
,
2
(
1
), pp.
23
27
. 10.2174/1874282300802010023
30.
Geiger
,
M.
,
Diabaté
,
L.
,
Ménard
,
L.
, and
Wald
,
L.
,
2002
, “
A Web Service for Controlling the Quality of Measurements of Global Solar Irradiation
,”
Sol. Energy
,
73
(
6
), pp.
475
480
. 10.1016/S0038-092X(02)00121-4
31.
Molineaux
,
B.
, and
Ineichen
,
P.
,
1994
, “
Automatic Quality Control of Daylight Measurement: Software for IDMP Stations
,” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.529.9248&rep=rep1&type=pdf
32.
Long
,
C. N.
, and
Dutton
,
E. G.
,
2002
, “
BSRN Global Network Recommended QC Tests
,”
V2.0. BSRN Technical Report
, https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf
33.
Ameen
,
B.
,
Balzter
,
H.
, and
Jarvis
,
C.
,
2018
, “
Quality Control of Global Horizontal Irradiance Estimates Through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures
,”
Climate 2018
,
6
(
3
), p.
69
.
34.
Bakirci
,
K.
,
2017
, “
Prediction of Global Solar Radiation and Comparison With Satellite Data
,”
J. Atmos. Sol.-Terr. Phy.
,
152
, pp.
41
49
. 10.1016/j.jastp.2016.12.002
35.
Darhmaoui
,
H.
, and
Lahjouji
,
D.
,
2013
, “
Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region
,”
Energy Proc.
,
42
, pp.
426
435
. 10.1016/j.egypro.2013.11.043
36.
Espinar
,
B.
,
Blanc
,
P.
,
Wald
,
L.
,
Hoyer-Klick
,
C.
,
Schroedter-Homscheidt
,
M.
, and
Wanderer
,
T.
,
2012
, “
On Quality Control Procedures for Solar Radiation and Meteorological Measures, From Subhourly to Monthly Average Time Periods
,”
EGU General Assembly 2012
,
Vienne, Austria
,
Apr. 2012, hal-00691350
.
37.
Ramgolam
,
Y. K.
, and
Soyjaudah
,
K. M. S.
,
2015
, “
Unveiling the Solar Resource Potential for Photovoltaic Applications in Mauritius
,”
Renewable Energy
,
77
, pp.
94
100
. 10.1016/j.renene.2014.12.011
38.
Zajaczkowski
,
J.
,
Wong
,
K.
, and
Carter
,
J.
,
2013
, “
Improved Historical Solar Radiation Gridded Data for Australia
,”
Environ. Modell. Softw.
,
49
, pp.
64
77
. 10.1016/j.envsoft.2013.06.013
39.
Chelbi
,
M.
,
Gagnon
,
Y.
, and
Waewsak
,
J.
,
2015
, “
Solar Radiation Mapping Using Sunshine Duration-Based Models and Interpolation Techniques: Application to Tunisia
,”
Energy Convers. Manage.
,
101
, pp.
203
215
. 10.1016/j.enconman.2015.04.052
40.
Liu
,
X.
,
Mei
,
X.
,
Li
,
Y.
,
Porter
,
J. R.
,
Wang
,
Q.
, and
Zhang
,
Y.
,
2010
, “
Choice of the Ångström–Prescott Coefficients: Are Time-Dependent Ones Better Than Fixed Ones in Modeling Global Solar Irradiance?
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2565
2574
. 10.1016/j.enconman.2010.05.020
41.
Paulescu
,
M.
,
Stefu
,
N.
,
Calinoiu
,
D.
,
Paulescu
,
E.
,
Pop
,
N.
,
Boata
,
R.
, and
Mares
,
O.
,
2016
, “
Ångström–Prescott Equation: Physical Basis, Empirical Models and Sensitivity Analysis
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
495
506
. 10.1016/j.rser.2016.04.012
42.
Zhao
,
N.
,
Zeng
,
X.
, and
Han
,
S.
,
2013
, “
Solar Radiation Estimation Using Sunshine Hour and Air Pollution Index in China
,”
Energy Convers. Manage.
,
76
, pp.
846
851
. 10.1016/j.enconman.2013.08.037
43.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Elaziz
,
M. A.
,
Kabeel
,
A. E.
,
Guillan
,
W.
, and
Haiou
,
Z.
,
2019
, “
Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review
,”
Sol. Energy
,
180
, pp.
622
639
. 10.1016/j.solener.2019.01.037
44.
Ramgolam
,
Y. K.
, and
Soyjaudah
,
K. M. S.
,
2018
, “
Modelling the Impact of Spectral Irradiance and Average Photon Energy on Photocurrent of Solar Modules
,”
Sol. Energy
,
173
, pp.
1058
1064
. 10.1016/j.solener.2018.08.055
You do not currently have access to this content.