Abstract

Power generation from renewable energy sources, in particular solar photovoltaics (PV), has become extremely attractive thanks to its very low levelized cost of electricity (LCoE). In desert-like environments, the energy yield is drastically reduced due to dust accumulation. While effective and affordable cleaning strategies can be implemented in large, MW-size PV power plants, soiling remains an economic and logistic challenge. In this article, we analyze the soiling loss rates of PV modules for different tilt angles measured during a period of 15 months in the Western Region of Saudi Arabia. We observe a strong correlation between weather parameters like humidity and wind speed and the mechanism of dust accumulation. Our measurements show that, for specific weather conditions, soiled modules undergo a partial cleaning process. As a consequence, and for the first time, the soiling loss rates are shown to have a clear dependence on the current soiling state of the modules, with clean modules soiling twice as fast as soiled ones. This dependency is a key for predicting the correct cleaning frequency of a PV power plant. Finally, the results obtained for vertically mounted modules (90 deg), where dust accumulation is negligible, point to a favorable case for the use of bifacial PV modules.

References

References
1.
Howarth
,
N.
,
2017
,
Growth Through Diversification and Energy Efficiency: Energy Productivity in Saudi Arabia
,
King Abdullah Petroleum Studies and Research Center
,
Riyadh, Saudi Arabia
,
KS-2017–DP02
.
2.
Wogan
,
D.
,
Pradhan
,
S.
, and
Albardi
,
S.
,
2017
,
GCC Energy System Overview—2017
,
King Abdullah Petroleum Studies and Research Center
,
Riyadh, Saudi Arabia
,
KS-2017–MP04.
3.
El-Katiri
,
L.
,
Khalid
,
A.
,
Mills
,
R.
,
Salman
,
M.
, and
Ibrahim
,
R.
,
2019
,
Renewable Energy Market Analysis: GCC 2019
,
International Renewable Energy Agency (IRENA)
,
Abu Dhabi, United Arab Emirates
.
4.
Al-Yemni
,
F.
,
2019
, “
Saudi Arabia National Renewable Energy Program
,”
Saudi Vision 2030
,
Riyadh, Saudi Arabia
,
Jan. 18
, pp.
1
3
.
5.
Javed
,
W.
,
Yiming
,
W.
,
Figgis
,
B.
, and
Guo
,
B.
,
2017
, “
Characterization of Dust Accumulated on Photovoltaic Panels in Doha, Qatar
,”
Sol. Energy
,
142
(
1
), pp.
123
135
. 10.1016/j.solener.2016.11.053
6.
Micheli
,
L.
, and
Muller
,
M.
,
2017
, “
An Investigation of the Key Parameters for Predicting PV Soiling Losses
,”
Progr. Photovoltaics Res. Appl.
,
25
(
4
), pp.
291
307
. 10.1002/pip.2860
7.
Sarver
,
T.
,
Al-Qaraghuli
,
A.
, and
Kazmerski
,
L.
,
2013
, “
A Comprehensive Review of the Impact of Dust on the Use of Solar Energy History Investigations Results Literature and Mitigation Approaches
,”
Renewable Sustainable Energy Rev.
,
22
(
1
), pp.
698
733
. 10.1016/j.rser.2012.12.065
8.
Kazem
,
H. A.
, and
Chaichan
,
M.
,
2016
, “
Experimental Analysis of the Effect of Dust’s Physical Properties on Photovoltaic Modules in Northern Oman
,”
Sol. Energy
,
139
(
1
), pp.
68
80
. 10.1016/j.solener.2016.09.019
9.
Syafiq
,
A.
,
Pandey
,
A.
,
Nor Adzman
,
N.
, and
Abd Rahim
,
N.
,
2018
, “
Advances in Approaches and Methods for Self-Cleaning of Solar Photovoltaic Panels
,”
Sol. Energy
,
162
(
3
), pp.
597
619
. 10.1016/j.solener.2017.12.023
10.
Parrott
,
B.
,
Zanini
,
P.
,
Shehri
,
A.
,
Kotsovos
,
K.
, and
Gereige
,
I.
,
2018
, “
Automated, Robotic Dry-Cleaning of Solar Panels in Thuwal, Saudi Arabia T Using a Silicone Rubber Brush
,”
Sol. Energy
,
171
(
7
), pp.
526
533
. 10.1016/j.solener.2018.06.104
11.
Jones
,
R.
,
Baras
,
A.
,
Saeeri
,
A.
,
Qahtani
,
A.
,
Alamoudi
,
A.
,
Shaya
,
Y.
,
Alodan
,
M.
, and
Al-Hsaien
,
S.
,
2016
, “
Optimized Cleaning Cost and Schedule Based on Observed Soiling Conditions for Photovoltaic Plants in Central Saudi Arabia
,”
IEEE J. Photovoltaics
,
6
(
3
), pp.
730
738
. 10.1109/JPHOTOV.2016.2535308
12.
Gostein
,
M.
,
Littmann
,
B.
,
Caron
,
J.
, and
Dunn
,
L.
,
2013
, “
Comparing PV Power Plant Soiling Measurements Extracted From PV Module Irradiance and Power Measurements
,”
Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
,
Tampa, FL
,
June 1
, pp.
3004
3009
.
13.
Zorrilla-Casanova
,
J.
,
Piliougine
,
M.
,
Rubio
,
J.
,
Bernaola-Galvan
,
P.
,
Carpena
,
P.
,
López
,
L.
, and
Sidrach-de-Cardona
,
M.
,
2013
, “
Losses Produced by Soiling in the Incoming Radiation to Photovoltaic Modules
,”
Progr. Photovoltaics Res. Appl.
,
21
(
4
), pp.
790
796
. 10.1002/pip.1258
14.
Elminir
,
H. K.
,
Ghitas
,
A. E.
,
Hamid
,
R. H.
,
El-Hussainy
,
F.
,
Beheary
,
M. M.
, and
Abdel-Moneim
,
K. M.
,
2006
, “
Effect of Dust on the Transparent Cover of Solar Collectors
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
3192
3203
. 10.1016/j.enconman.2006.02.014
15.
Arash
,
S.
,
Mark
,
N. H.
, and
Malay
,
K. M.
,
2014
, “
Energy Yield Loss Caused by Dust Deposition on Photovoltaic Panels
,”
Sol. Energy
,
107
(
1
), pp.
576
604
. 10.1016/j.solener.2014.05.030
16.
Figgis
,
B.
,
Ennaoui
,
A.
,
Ahzi
,
S.
, and
Rémond
,
Y.
,
2017
, “
Review of PV Soiling Particle Mechanics in Desert Environments
,”
Renewable Sustainable Energy Rev.
,
76
(
2
), pp.
872
881
. 10.1016/j.rser.2017.03.100
17.
Fountoukis
,
C.
,
Figgis
,
B.
,
Ackermann
,
L.
, and
Ayoub
,
M. A.
,
2018
, “
Effects of Atmospheric Dust Deposition on Solar PV Energy Production in a Desert Environment
,”
Sol. Energy
,
164
(
4
), pp.
94
100
. 10.1016/j.solener.2018.02.010
18.
Lawrie
,
L. K.
, and
Crawley
,
D. B.
,
2018
, “
Development of Global Typical Meteorological Years (TMYx) using the TMY/ISO 15927-4:2005 Methodologies
,”
Climate One Building
,
Washington, D.C
.
19.
Jenya
,
M.
,
2018
, “
Hurdles to Widespread Bifacial PV Adoption
,”
PV Tech Power
,
London, UK
,
Technical Report No. TP-49888
.
20.
Hartmut
,
N.
,
Markus
,
K.
,
Radovan
,
K.
, and
Joris
,
L.
,
2019
, “
PV Systems With Lowest LCOE Using Bifacial Modules: State-of-the-Art Systems and Components
,”
PV Tech Power
,
London, UK
,
Technical Report No. TP-50196
.
You do not currently have access to this content.