Abstract

Renewable energy sources are being considered an alternative for the provision of an uninterrupted supply of power to cover the extensive mobile services. The main purpose of this study is to determine a cost-effective way of achieving environmental sustainability of electricity supply in Global System for Mobile (GSM) communications mobile phone applications using photovoltaic systems. A specific installation of base transceiver stations and base station located in an arid and remote area was used as a case study. Using PV solar systems to secure a GSM relay in remote areas with hot climate is a very attractive alternative because of the solar irradiation accessible in the desert. The economic study carried out using the “Hybrid Optimization Model for Electric Renewable” simulation tool showed that the best configuration of the solar photovoltaic system for the case study in the present work consisted of 6 kW photovoltaic panels, 4 kW converter, and 24 storage batteries. The solar energy contribution in the electricity consumption was around 38%, and the other 62% was supplied by the power grid. The total net present cost (NPC) of the solar system was 43,946$. Regarding the environmental impact, all energy scenarios investigated showed a significant improvement in the environmental life cycle; especially the emissions of carbon dioxide were reduced by 65% by replacing the diesel generator backup system with the photovoltaic-assisted system.

References

References
1.
Adegoke
,
A. S.
, and
Babalola
,
I. T.
,
2011
, “
Quality of Service of GSM Telephone System in Nigeria
,”
Am. J. Sci. Ind. Res.
,
2
(
5
), pp.
707
712
. 10.5251/ajsir.2011.2.5.707.712
2.
Kovats
,
R. S.
,
Campbell-Lendrum
,
D.
, and
Matthies
,
F.
,
2005
, “
Climate Change and Human Health: Estimating Avoidable Deaths and Disease
,”
Int. J. Risk Anal.
,
25
(
6
), pp.
1409
1418
. 10.1111/j.1539-6924.2005.00688.x
3.
Kennedy
,
C.
, and
VandeWeghe
,
J. R.
,
2007
, “
A Spatial Analysis of Residential Greenhouse Gas Emissions in the Toronto Census Metropolitan Area
,”
J. Ind. Ecol.
,
11
(
2
), pp.
133
144
. 10.1162/jie.2007.1107
4.
Rahman
,
S. M.
, and
Khondaker
,
A. N.
,
2012
, “
Mitigation Measures to Reduce Greenhouse Gas Emissions and Enhance Carbon Capture and Storage in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
2446
2460
. 10.1016/j.rser.2011.12.003
5.
Rahmstorf
,
S.
,
2008
, “Anthropogenic Climate Change: Revisiting the Facts,”
Global Warming: Looking Beyond Kyoto
,
Brookings Institution Press
,
Washington
, pp.
34
53
.
6.
Zamagni
,
A.
,
Masoni
,
P.
,
Buttol
,
P.
,
Raggi
,
A.
, and
Buonamici
,
R.
,
2012
, “
Finding Life Cycle Assessment Research Direction With the Aid of Meta-Analysis
,”
J. Ind. Ecol.
,
16
(
1
), pp.
39
52
. 10.1111/j.1530-9290.2012.00467.x
7.
Bentouba
,
S.
,
Hamouda
,
M.
,
Slimani
,
A.
,
Pere Roca
,
C.
,
Bourouis
,
M.
,
Coronas
,
A.
,
Draoui
,
B.
, and
Boucherit
,
M. S.
,
2013
, “
Hybrid System and Environmental Evaluation Case House in South of Algeria
,”
Energy Procedia
,
36
, pp.
1328
1338
. 10.1016/j.egypro.2013.07.151
8.
Margaret Amutha
,
W.
, and
Rajini
,
V.
,
2015
, “
Techno-Economic Evaluation of Various Hybrid Power Systems for Rural Telecom
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
553
561
. 10.1016/j.rser.2014.10.103
9.
Salas
,
V.
,
Suponthana
,
W.
, and
Salas
,
R. A.
,
2015
, “
Overview of the Off-Grid Photovoltaic Diesel Batteries Systems With AC Loads
,”
Appl. Energy
,
157
, pp.
195
216
. 10.1016/j.apenergy.2015.07.073
10.
Issaadi
,
W.
,
Khireddine
,
A.
, and
Issaadi
,
S.
,
2016
, “
Management of a Base Station of Mobile Network Using a Photovoltaic System
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1570
1590
. 10.1016/j.rser.2015.12.054
11.
Kusakana
,
K.
, and
Vermaak
,
H. J.
,
2013
, “
Hybrid Renewable Power Systems for Mobile Telephony Base Stations in Developing Countries
,”
Renewable Energy
,
51
, pp.
419
425
. 10.1016/j.renene.2012.09.045
12.
Anayochukwu
,
A. V.
, and
Onyeka
,
A. E.
,
2014
, “
Simulation of Solar-Photovoltaic Hybrid Power Generation System With Energy Storage and Supervisory Control for Base Transceiver Station (BTS) Site Located in Rural Nigeria
,”
Int. J. Renew. Energy Res.
,
4
(
1
), pp.
23
30
.
13.
Yang
,
L.
,
Chen
,
W.
,
Wang
,
J.
,
Ye
,
Q.
, and
Cheng
,
J.
,
2007
, “
PV-Diesel Power Supply Monitor System for Base Station of Telecommunication at Remote Area
,”
Proceedings of the ISES Solar World Congress, Solar Energy and Human Settlement
,
Beijing, China
, Sept. 18–21, pp.
1414
1423
.
14.
Lubritto
,
C.
,
Petraglia
,
A.
,
Vetromile
,
C.
,
Curcuruto
,
C.
,
Logorelli
,
M.
,
Marsico
,
G.
, and
D’Onofrio
,
A.
,
2011
, “
Energy and Environmental Aspects of Mobile Communication Systems
,”
Energy
,
36
(
2
), pp.
1109
1114
. 10.1016/j.energy.2010.11.039
15.
Hybrid Optimization Model for Electric Renewable (HOMER)
”, https://www.homerenergy.com/index.html, Accessed July 12, 2020.
16.
SimaPro, LCA Software
,” https://simapro.com/databases/ecoinvent/, Accessed July 12, 2020.
17.
Bentouba
,
S.
,
2012
, “
Contribution à L’optimisation et la Robustesse D’un Système Photovoltaïque, Site D’Adrar
,”
Ph.D. thesis
,
University of Bechar
,
Algeria
.
18.
Dike
,
U. I.
,
Anthony
,
U. A.
, and
Ademola
,
A.
,
2014
, “
Analysis of Telecom Base Stations Powered by Solar Energy
,”
Int. J. Sci. Technol. Res.
,
3
(
4
), pp.
369
374
.
19.
Yeh
,
C. C.
, and
Madhav
,
D. M.
,
2007
, “
A Reconfigurable Uninterruptible Power Supply
,”
IEEE Trans. Power electron.
,
22
(
4
), pp.
1361
1372
. 10.1109/TPEL.2007.900486
20.
Willy
,
P.
,
2003
,
Principe de Fonctionnement des Réseaux de Téléphonie Mobile GSM
,
Institut Scientifique de Service Public
,
Liège, Belgium
.
21.
Yang
,
B.
,
Li
,
W.
,
Zhao
,
Y.
, and
He
,
X.
,
2010
, “
Design and Analysis of a Grid-Connected Photovoltaic Power System
,”
IEEE Trans. Power Electron.
,
25
(
4
), pp.
992
1000
. 10.1109/TPEL.2009.2036432
22.
Mamatha
,
G.
,
2016
, “
Assessment of Different MPPT Techniques for PV System
,”
J. Electr. Eng.
,
16
(
1
), pp.
116
123
.
23.
Ito
,
M.
,
Komoto
,
K.
, and
Kurokawa
,
K.
,
2010
, “
Life-Cycle Analyses of Very-Large Scale PV Systems Using Six Types of PV Modules
,”
Curr. Appl. Phys.
,
10
(
2
), pp.
271
273
. 10.1016/j.cap.2009.11.028
24.
Yue
,
D.
,
You
,
F.
, and
Darling
,
S. B.
,
2014
, “
Domestic and Overseas Manufacturing Scenarios of Silicon-Based Photovoltaics: Life Cycle Energy and Environmental Comparative Analysis
,”
Solar. Energy
,
105
, pp.
669
678
. 10.1016/j.solener.2014.04.008
25.
Sagani
,
A.
,
Mihelis
,
J.
, and
Dedoussis
,
V.
,
2017
, “
Techno-economic Analysis and Life-Cycle Environmental Impacts of Small-Scale Building-Integrated PV Systems in Greece
,”
Energy and Buildings
,
139
, pp.
277
290
. 10.1016/j.enbuild.2017.01.022
26.
de Wild-Scholten
,
M. J.
, and
Alsema
,
E. A.
,
2005
, “
Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production
,”
Material Research Society Fall Meeting Symposium G: Life Cycle Analysis Tools for Green Materials and Process Selection
,
Boston, MA
,
Nov. 28–30
.
27.
Phylipsen
,
G. I. M.
, and
Alsema
,
E. A.
,
1995
,
Environmental Life-Cycle Assessment of Multi Crystalline Silicon Solar Cells Modules
,
Utrecht University
,
The Netherlands
.
28.
Fthenakis
,
V. M.
, and
Kim
,
H. C.
,
2005
, “
Energy Use and Greenhouse Gas Emissions in the Lifecycle of CdTe Photovoltaics
,”
Material Research Society Fall Meeting Symposium G: Life Cycle Analysis Tools for Green Materials and Process Selection
,
Boston, MA
,
Nov. 25–28
.
29.
Liu
,
X.
,
Hoekman
,
S. K.
,
Robbins
,
C.
, and
Ross
,
P.
,
2015
, “
Lifecycle Climate Impacts and Economic Performance of Commercial-Scale Solar PV Systems: A Study of PV Systems at Nevada’s Desert Research Institute (DRI)
,”
Solar. Energy
,
119
, pp.
561
572
. 10.1016/j.solener.2015.05.001
30.
Gunhan Ozcan
,
H.
,
Gunerhan
,
H.
,
Yildirim
,
N.
, and
Hepbasli
,
A.
,
2019
, “
A Comprehensive Evaluation of PV Electricity Production Methods and Life Cycle Energy-Cost Assessment of a Particular System
,”
J. Cleaner Prod.
,
238
, p.
17883
.
31.
Institute of Environmental Sciences (CML)
, “CML-IA Characterization Factors,”
Institute of Environmental Sciences (CML), Leiden University
,
The Netherlands
.
32.
Goedkoop
,
M.
,
2013
,
“Eco-indicator 95 Manuals—Weighting Method for Environmental Effects That Damage Ecosystems or Human Health on a European Scale,” Final Report
.
33.
Nema
,
P.
,
Rangnekar
,
S.
, and
Nema
,
R. K.
,
2010
, “
Pre-Feasibility Study of PV-Solar/Wind Hybrid Energy System for GSM Type Mobile Telephony Base Station in Central India
,”
The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010
, Vol.
5
,
Article No
., pp.
152
156
.
34.
Bernal-Agustín
,
J. L.
, and
Dufo-López
,
R.
,
2009
, “
Simulation and Optimization of Stand-Alone Hybrid Renewable Energy Systems
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
2111
2118
. 10.1016/j.rser.2009.01.010
35.
Lorenzi
,
G.
, and
Silva
,
C. A. S.
,
2016
, “
Comparing Demand Response and Battery Storage to Optimize Self-Consumption in PV Systems
,”
Appl. Energy
,
180
, pp.
524
535
. 10.1016/j.apenergy.2016.07.103
36.
Zubi
,
G.
,
Dufo-López
,
R.
,
Pasaoglu
,
G.
, and
Pardo
,
N.
,
2016
, “
Techno-Economic Assessment of an off-Grid PV System for Developing Regions to Provide Electricity for Basic Domestic Needs: A 2020–2040 Scenario
,”
Appl. Energy
,
176
, pp.
309
319
. 10.1016/j.apenergy.2016.05.022
37.
International Renewable Energy Agency
,
2012
, “
Renewable Energy Technologies: Cost Analysis Series
,”
IRENA Working Paper, Solar Photovoltaics
, p.
1
.
38.
U.S. Environmental Protection Agency (EPA)
, “
Understanding Global Warming Potentials
,” https://www.epa.gov/, Accessed July 12, 2020.
39.
Ogunjuyigbe
,
A. S. O.
,
Ayodele
,
T. R.
, and
Akinola
,
O. A.
,
2016
, “
Optimal Allocation and Sizing of PV/Wind/Split-Diesel/Battery Hybrid Energy System for Minimizing Life Cycle Cost Carbon Emission and Dump Energy of Remote Residential Building
,”
Appl. Energy
,
171
, pp.
153
171
. 10.1016/j.apenergy.2016.03.051
40.
Bahramara
,
S.
,
Moghaddam
,
M. P.
, and
Haghifam
,
M. R.
,
2016
, “
Optimal Planning of Hybrid Renewable Energy Systems Using HOMER: A Review
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
609
620
. 10.1016/j.rser.2016.05.039
41.
Al-Karaghouli
,
A.
, and
Kazmersk
,
L. L.
,
2010
, “
Optimization and Life-Cycle Cost of Health Clinic PV System for a Rural Area in Southern Iraq Using HOMER Software
,”
Sol. Energy
,
84
(
4
), pp.
710
714
. 10.1016/j.solener.2010.01.024
42.
Sen
,
R.
, and
Bhattacharyya
,
S. C.
,
2014
, “
Off-Grid Electricity Generation With Renewable Energy Technologies in India: An Application of HOMER
,”
Renewable Energy
,
62
, pp.
388
398
. 10.1016/j.renene.2013.07.028
43.
Shezan
,
S. A.
,
Julai
,
S.
,
Kibria
,
M. A.
,
Ullah
,
K. R.
,
Saidur
,
R.
,
Chong
,
W. T.
, and
Akikur
,
R. K.
,
2016
, “
Performance Analysis of an Off-Grid Wind-PV (Photovoltaic)-Diesel-Battery Hybrid Energy System Feasible for Remote Areas
,”
J. Cleaner Prod.
,
125
(
1
), pp.
121
132
. 10.1016/j.jclepro.2016.03.014
44.
Amutha
,
M. W.
, and
Rajini
,
V.
,
2016
, “
Cost Benefit and Technical Analysis of Rural Electrification Alternatives in Southern India Using HOMER
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
236
246
. 10.1016/j.rser.2016.04.042
45.
Zahboune
,
H.
,
Zouggar
,
S.
,
Krajacic
,
G.
,
Varbanov
,
P. S.
,
Elhafyani
,
M.
, and
Ziani
,
E.
,
2016
, “
Optimal Hybrid Renewable Energy Design in Autonomous System Using Modified Electric System Cascade Analysis and Homer Software
,”
Energy Convers. Manage.
,
126
, pp.
909
922
. 10.1016/j.enconman.2016.08.061
46.
Akinyele
,
D. O.
, and
Rayudu
,
R. K.
,
2016
, “
Community-Based Hybrid Electricity Supply System: A Practical and Comparative Approach
,”
Appl. Energy
,
171
, pp.
608
628
. 10.1016/j.apenergy.2016.03.031
47.
Montuori
,
L.
,
Alcázar-Ortega
,
M.
,
Alvarez-Bel
,
C.
, and
Domijan
,
A.
,
2014
, “
Integration of Renewable Energy in Microgrids Coordinated With Demand Response Resources: Economic Evaluation of a Biomass Gasification Plant by Homer Simulator
,”
Appl. Energy
,
132
, pp.
15
22
. 10.1016/j.apenergy.2014.06.075
48.
Zhao
,
B.
,
Zhang
,
X.
,
Li
,
P.
,
Wang
,
K.
,
Xue
,
M.
, and
Wang
,
C.
,
2014
, “
Optimal Sizing, Operating Strategy and Operational Experience of a Stand-Alone Micro Grid on Dongfushan Island
,”
Appl. Energy
,
113
, pp.
1656
1666
. 10.1016/j.apenergy.2013.09.015
49.
Khan
,
M. J.
, and
Iqbal
,
M. T.
,
2005
, “
Pre-Feasibility Study of Stand-Alone Hybrid Energy Systems for Applications in Newfoundland
,”
Renewable Energy
,
30
(
6
), pp.
835
854
. 10.1016/j.renene.2004.09.001
50.
Algerian Ministry of Energy
, “
Electricity and Gas Regulation Commission (CREG)
,” http://www.creg.gov.dz, Accessed July 12, 2020.
You do not currently have access to this content.