Abstract

One of the problems of designing a solar compound parabolic concentrator (CPC) is related to its manufacturing shape accuracy. The complexity of curving and holding the CPC profile in place is indeed a challenging issue, especially because there are no standardized molds and the process is typically handmade. It is very easy to provoke misalignment on the CPC surface and in consequence, divert the solar incident rays, affecting significantly the optical efficiency of the system. This work presents a novel, inexpensive methodology to manufacture a CPC with accuracy by using basic tools. The design starts with the acquisition of a pair of medium-density fiberboard wooden templates of the CPC profile that are used later to make a Styrofoam CPC mold and then cut with a hot-wire technique. A high-reflectance anodized aluminum sheet is curved to approximate the CPC shape and is then coupled with the temporary Styrofoam mold. The last part consists of the elaboration of a housing system to contain the parts. This is consolidated by a polyurethane resin that expands and fills all enclosure cavities, offering stiffness and stability. A photogrammetry analysis was implemented for the validation of the surface shape accuracy. The results from the optical analysis show that this technique achieved a high degree of accuracy and homogeneity on the CPC surface shape.

References

1.
Tian
,
M.
,
Su
,
Y.
,
Zheng
,
H.
,
Pei
,
G.
,
Li
,
G.
, and
Riffat
,
S.
,
2018
, “
A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
82
(
1
), pp.
1272
1296
. 10.1016/j.rser.2017.09.050
2.
Lupfert
,
E.
,
Pottler
,
K.
,
Ulmer
,
S.
,
Riffelmann
,
K. J.
,
Neumann
,
A.
, and
Schiricke
,
B.
,
2007
, “
Parabolic Trough Optical Performance Analysis Techniques
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
147
152
. 10.1115/1.2710249
3.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
Oxford, UK
.
4.
Wei
,
X.
,
Lu
,
Z.
,
Yu
,
W.
, and
Xu
,
W.
,
2013
, “
Ray Tracing and Simulation for the Beam-Down Solar Concentrator
,”
Renewable Energy
,
50
, pp.
161
167
. 10.1016/j.renene.2012.06.029
5.
Yadav
,
D.
, and
Banerjee
,
R.
,
2016
, “
A Review of Solar Thermochemical Processes
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
497
532
. 10.1016/j.rser.2015.10.026
6.
Wei
,
Q.
,
Yang
,
Y.
,
Hou
,
J.
,
Liu
,
H.
,
Cao
,
F.
, and
Zhao
,
L.
,
2017
, “
Direct Solar Photocatalytic Hydrogen Generation with CPC Photoreactors: System Development
,”
Sol. Energy
,
153
, pp.
215
223
. 10.1016/j.solener.2017.05.064
7.
Li
,
L.
,
Wang
,
B.
,
Pottas
,
J.
, and
Lipiński
,
W.
,
2019
, “
Design of a Compound Parabolic Concentrator for a Multi-Source High-Flux Solar Simulator
,”
Sol. Energy
,
183
, pp.
805
811
. 10.1016/j.solener.2019.03.017
8.
Carvalho
,
M. J.
,
Collares-Pereira
,
M.
, and
Gordon
,
J. M.
,
1987
, “
Economic Optimization of Stationary Nonevacuated CPC Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
109
(
1
), pp.
40
45
. 10.1115/1.3268176
9.
Terrón-Hernández
,
M.
,
Peña-Cruz
,
M. I.
,
Carrillo
,
J. G.
,
Diego-Ayala
,
U.
, and
Flores
,
V.
,
2018
, “
Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater
,”
Energies
,
11
(
2
), p.
291
. 10.3390/en11020291
10.
Oommen
,
R.
, and
Jayaraman
,
S.
,
2001
, “
Development and Performance Analysis of Compound Parabolic Solar Concentrators with Reduced Gap Losses–Oversized Reflector
,”
Energy Convers. Manage.
,
42
(
11
), pp.
1379
1399
. 10.1016/S0196-8904(00)00113-8
11.
Adsten
,
M.
,
Helgesson
,
A.
, and
Karlsson
,
B.
,
2005
, “
Evaluation of CPC-Collector Designs for Stand-Alone, Roof- Or Wall Installation
,”
Sol. Energy
,
79
(
6
), pp.
638
647
. 10.1016/j.solener.2005.04.023
12.
Gu
,
X.
,
Taylor
,
R. A.
, and
Rosengarten
,
G.
,
2014
, “
Analysis of a New Compound Parabolic Concentrator-Based Solar Collector Designed for Methanol Reforming
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041012
. 10.1115/1.4027767
13.
Collares-Pereira
,
M.
,
1985
, “
Description and Testing of a Non-Evacuated 1.5xCPC Collector Thermal Performance Comparison with Other Collector Types
,”
ASME J. Sol. Energy Eng.
,
107
(
4
), pp.
277
280
. 10.1115/1.3267692
14.
Arancibia-Bulnes
,
C. A.
,
Peña-Cruz
,
M. I.
,
Mutuberría
,
A.
,
Díaz-Uribe
,
R.
, and
Sánchez-González
,
M.
,
2017
, “
A Survey of Methods for the Evaluation of Reflective Solar Concentrator Optics
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
673
684
. 10.1016/j.rser.2016.11.048
15.
Shortis
,
M. R.
, and
Johnston
,
G. H. G.
,
1996
, “
Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part I: Measurements of Surfaces
,”
ASME J. Sol. Energy Eng.
,
118
(
3
), pp.
146
150
. 10.1115/1.2870886
16.
Shortis
,
M.
, and
Johnston
,
G.
,
1997
, “
Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part II: Assessment of Surfaces
,”
ASME J. Sol. Energy Eng.
,
119
(
4
), pp.
286
291
. 10.1115/1.2888034
17.
Pottler
,
K.
,
Lupfert
,
E.
,
Johnston
,
G. H.
, and
Shortis
,
M. R.
,
2005
, “
Photogrammetry: A Powerful Tool for Geometric Analysis of Solar Concentrators and Their Components
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
94
101
. 10.1115/1.1824109
18.
Winston
,
R.
,
Miñano
,
J. C.
, and
Benitez
,
P.
,
2005
,
Nonimaging Optics
,
Academic Press
,
Burlington, MA
.
You do not currently have access to this content.