Abstract

Batch type food dryers are common for drying agricultural produce due to simple in design, but they are prone to nonuniform drying and significant heat cost exclusively if they fall in the medium to large size range. The current study illustrates a solar hybrid food dryer using a gas burner and solar collector (evacuated tube collector, ETC) as heating source along with an inline perforation inside the drying chamber to obtain spatial drying homogeneity. Air distribution was assessed through three-dimensional simulation using computational fluid dynamics (CFD) analysis. Performance trials were conducted under three heating options (ETC, gas, and dual) using green chilies at 60 °C. Throughout drying chamber, under all heating modes, the average difference in drying rates ranged from 0.61 to 1.30 kg water/kg dry matter, demonstrating homogeneous drying. Simulated and experimental results of air distribution were found to be in agreement with each other. Using three options for thermal heating (ETC, gas, and dual) and an overall 58% efficiency for evacuated tube collector, the specific energy for moisture evaporation was found to be 4.5–5.7 MJ/kg and specific product energy 19.2–24.9 MJ/kg. In case of dual heating option, the energy supplied by solar and gas sources for a 20 hours period was 50.64% (160.22 MJ) and 49.35% (156.13 MJ), respectively. Compared with dual heating option, energy cost can be reduced by 68% if only solar energy is used as a heating option but with a protracted drying time.

References

References
1.
Abubakar
,
I.
,
Khalid
,
S.
,
Mustafa
,
M.
,
Shareef
,
H.
, and
Mustapha
,
M.
,
2017
, “
Application of Load Monitoring in Appliances’ Energy Management–A Review
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
235
245
. 10.1016/j.rser.2016.09.064
2.
Sabiha
,
A. M.
,
Rahman
,
S.
,
Hassani
,
S.
, and
Said
,
Z.
,
2015
, “
Energy Performance of an Evacuated Tube Collector Using Single Walled Carbon Nanotubes Nanofluids
,”
Energy Convers. Manage.
,
105
, pp.
1377
1388
. 10.1016/j.enconman.2015.09.009
3.
Amjad
,
W.
,
Hensel
,
O.
,
Munir
,
A.
,
Esper
,
A.
, and
Sturm
,
B.
,
2016
, “
Thermodynamic Analysis of the Drying Process in a Diagonal-Batch Dryer Developed for Batch Uniformity Using Potato Slices
,”
J. Food Eng.
,
169
, pp.
238
249
. 10.1016/j.jfoodeng.2015.09.004
4.
Amanlou
,
Y.
, and
Zomorodian
,
A.
,
2010
, “
Applying CFD for Designing a New Fruit Cabinet Dryer
,”
J. Food Eng.
,
101
(
1
), pp.
8
15
. 10.1016/j.jfoodeng.2010.06.001
5.
Babalis
,
S. J.
,
Paparicolaou
,
E.
, and
Belessiotis
,
V. G.
,
2005
, “
Impact of Alternating Drying-Air Flow Direction on the Drying Kinetics of Agricultural Products
,”
3rd IASME/ WSEAS International Conference on Heat Transfer
,
Thermal Engineering and Environment Corfu
,
Greece
,
Aug. 20–22, 2005
, pp.
300
305
.
6.
Darabi
,
H.
,
Zomorodin
,
A.
,
Akbari
,
M. H.
, and
Lorestani
,
A. N.
,
2013
, “
Design of Cabinet Dryer With Two Geometric Configurations Using CFD
,”
J. Food Sci. Technol.
,
52
(
1
), pp.
359
366
. 10.1007/s13197-013-0983-1
7.
Gülah
,
C.
, and
Cengiz
,
Y. I. D.
,
2009
, “
Design of a New Solar Dryer System With Swirling Flow for Drying Seeded Grape
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
984
990
. 10.1016/j.icheatmasstransfer.2009.06.012
8.
Hossain
,
M. A.
, and
Bala
,
B. K.
,
2007
, “
Drying of Hot Chilli Using Solar Tunnel Dryer
,”
Sol. Energy
,
81
(
1
), pp.
85
92
. 10.1016/j.solener.2006.06.008
9.
Zhang
,
R.
, and
Long
,
J.
,
2017
, “
Study on Drying Uniformity of Static Small-Sized Drying Box for Fruits and Vegetables
,”
Procedia Eng.
,
205
, pp.
2615
2622
. 10.1016/j.proeng.2017.10.201
10.
Messaoud
,
S.
,
Abdelghani
,
B.
, and
Djamel
,
M.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050802
. doi.org/10.1115/1.4043613
11.
Sagar
,
V. R.
, and
Suresh Kumar
,
P.
,
2010
, “
Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review
,”
J. Food Sci. Technol.
,
47
(
1
), pp.
15
26
. 10.1007/s13197-010-0010-8
12.
Artnaseaw
,
A.
,
Theerakulpisut
,
S.
, and
Benjapiyaporn
,
C.
,
2010
, “
Development of a Vaccum Heat Pump Dryer for Drying Chilli
,”
Biosyst. Eng.
,
105
(
1
), pp.
130
138
. 10.1016/j.biosystemseng.2009.10.003
13.
Gaurav
,
S.
, and
Gaur
,
M. K.
,
2020
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051009
. doi.org/10.1115/1.4046465
14.
Kumar
,
S.
, and
Singh
,
S.
,
2011
, “
Performance Evaluation of Forced Convection Mixed-Mode Solar Dryer- Experimental Investigation
,”
World Congress on Sustainable Technologies (WCST)
,
London
,
Nov. 7–10
, pp.
112
117
. http://dx.doi.org/10.1109/WCST19361.2011.6114251
15.
Sundari
,
U. A. R.
,
Neelamegam
,
P.
, and
Subramanian
,
C. V.
,
2013
, “
Performance Evaluation of a Forced Convection Solar Drier With Evacuated Tube Collector (ETC) for Drying Amla
,”
Int. J. Eng. Technol.
,
5
(
3
), pp.
2853
2858
.
16.
El-Sebaii
,
A. A.
, and
Shalaby
,
S. M.
,
2017
, “
Experimental Investigation of Drying Thymus Cut Leaves in Indirect Solar Dryer With Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061011
. doi.org/10.1115/1.4037816
17.
Sumit
,
T.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2015
, “
Performance Analysis of Photovoltaic-Thermal (PVT) Mixed Mode Greenhouse Solar Dryer
,”
Sol. Energy
,
133
, pp.
421
428
.
18.
Holman
,
J. P.
,
1994
,
Experimental Methods for Engineers
, 6th ed.,
McGraw-Hill
,
Singapore
.
19.
Bakal
,
S. B.
,
Sharma
,
G. P.
,
Sonawan
,
S. P.
, and
Verma
,
R. C.
,
2011
, “
Kinetics of Potato Drying Using Fluidized Bed Dryer
,”
J. Food Sci. Technol.
,
49
(
5
), pp.
608
613
. 10.1007/s13197-011-0328-x
20.
Doymaz
,
I.
, and
Ismail
,
O.
,
2011
, “
Drying Characteristics of Sweet Cherry
,”
Food Bioprod. Process.
,
89
(
1
), pp.
31
38
. 10.1016/j.fbp.2010.03.006
21.
Smolka
,
J.
,
Nowak
,
A. J.
, and
Rybarz
,
D.
,
2010
, “
Improved 3-D Temperature Uniformity in a Laboratory Drying Oven Based on Experimentally Validated CFD Computations
,”
J. Food Eng.
,
97
(
3
), pp.
373
383
. 10.1016/j.jfoodeng.2009.10.032
You do not currently have access to this content.