Abstract

A linear receiver able to achieve temperatures up to 800 °C is presented. The high-temperature resistance is achieved by avoiding critical aspects (vacuum, glass-metal joints, surface films) that limit the temperature in usual receivers; the thermal insulation is obtained by enclosing the receiver tube in an elliptic reflecting cavity. The tube is placed near a focus of the cavity, and the primary collector concentrates the radiation on the other focus, where the cavity has a small opening: the ellipse reflects the radiation toward the tube and largely contains the reflected radiation and thermal emission, thus acting both as a secondary reflector and as a cavity receiver. Optical and thermal simulations show that temperatures up to 800 °C can be achieved, with optical efficiency above 70% and thermal efficiency in the range 45–85% for temperatures in the range 500–800 °C; the local overall efficiency ranges from about 40% to 66%, depending on the receiver tube emissivity and fluid temperature. In this way, the field of applicability of the linear collector technology can be significantly extended to include a vast amount of processes such as thermochemical cycles for hydrogen production, and solar fuel production processes, which require temperatures above 700 °C.

References

References
1.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
. 10.1016/j.rser.2010.03.012
2.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
. 10.1115/1.1467922
3.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behnia
,
M.
,
1998
, “
Modelling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
(
6
), pp.
395
406
. 10.1016/S0038-092X(98)00031-0
4.
Zarza
,
E.
,
Valenzuela
,
L.
,
Leon
,
J.
,
Hennecke
,
K.
,
Eck
,
M.
,
Weyers
,
H. D.
, and
Eickhoff
,
M.
,
2004
, “
Direct Steam Generation in Parabolic Troughs: Final Results and Conclusions of the DISS Project
,”
Energy
,
29
(
5–6
), pp.
635
644
. 10.1016/S0360-5442(03)00172-5
5.
Jung
,
C.
,
Dersch
,
J.
,
Nietsch
,
A.
, and
Senholdt
,
M.
,
2015
, “
Technological Perspectives of Silicone Heat Transfer Fluids for Concentrated Solar Power
,”
Energy Proc.
,
69
, pp.
663
671
. 10.1016/j.egypro.2015.03.076
6.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
P.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
. 10.1115/1.1565087
7.
Kearney
,
D.
,
Kelly
,
P.
,
Herrmann
,
U.
,
Cable
,
R.
,
Pacheco
,
J.
,
Mahoney
,
R.
,
Price
,
H.
,
Blake
,
D.
,
Nava
,
P.
, and
Potrovitza
,
N.
,
2004
, “
Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field
,”
Energy
,
29
(
5–6
), pp.
861
870
. 10.1016/S0360-5442(03)00191-9
8.
Ahmed
,
M. H.
,
Amin
,
A. M. A.
, and
El Banna Fath
,
H.
,
2019
, “
Modeling of Solar Power Plant for Electricity Generation and Water Desalination
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011015
. 10.1115/1.4041260
9.
Falchetta
,
M.
,
Gambarotta
,
A.
,
Vaja
,
I.
,
Cucumo
,
M.
, and
Manfredi
,
C.
,
2006
, “
Modeling and Simulation of the Thermo and Fluid Dynamics of the “Archimede Project” Solar Power Station
,”
Proceedings of the 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems 2006
,
Aghia Pelagia, Crete, Greece
(ECOS 2006),
1499
1506
, Code 110222.
10.
Website: http://www.mats.enea.it/. Retrieved online on May 15, (
2020
).
11.
Mills
,
D. R.
, and
Morrison
,
G. L.
,
2000
, “
Compact Linear Fresnel Reflector Solar Thermal Powerplants
,”
Sol. Energy
,
68
(
3
), pp.
263
283
. 10.1016/S0038-092X(99)00068-7
12.
Häberle
,
A.
,
Zahler
,
C.
,
Lerchenmüller
,
H.
,
Mertins
,
M.
,
Wittwer
,
W.
,
Trieb
,
F.
, and
Dersch
,
J.
,
2002
, “
The Solarmundo Line Focusing Fresnel Collector: Optical Performance and Cost
,”
SolarPACES Conference
,
Zurich, Switzerland
.
13.
Grena
,
R.
, and
Tarquini
,
P.
,
2011
, “
Solar Linear Fresnel Collector Using Molten Nitrates as Heat Transfer Fluid
,”
Energy
,
36
(
2
), pp.
1048
1056
. 10.1016/j.energy.2010.12.003
14.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Haberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
(
1
), pp.
1
12
. 10.1016/j.solener.2011.06.020
15.
Winter
,
C. J.
,
Sizmann
,
R. L.
, and
Vant-Hull
,
L. L.
,
1991
,
Solar Power Plants
,
Springer-Verlag
,
Berlin
.
16.
Benoit
,
H.
,
Spreafico
,
L.
,
Gauthier
,
D.
, and
Flamant
,
G.
,
2016
, “
Review of Heat Transfer Fluids in Tube-Receivers Used in Concentrating Solar Thermal Systems: Properties and Heat Transfer Coefficients
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
298
315
. 10.1016/j.rser.2015.10.059
17.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Ng
,
K. C.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-art Heat Transfer fluids for Parabolic Trough Collector
,”
Int. J. Heat Mass Transfer
,
152
, p.
119541
. 10.1016/j.ijheatmasstransfer.2020.119541
18.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
. 10.1115/1.4024030
19.
Vignarooban
,
K.
,
Xu
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems—A Review
,”
Appl. Energy
,
46
, pp.
383
396
. 10.1016/j.apenergy.2015.01.125
20.
Besarati
,
S. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2015
, “
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031018
. 10.1115/1.4029861
21.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—a Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
. 10.1016/j.solener.2003.12.012
22.
O'Keefe
,
D.
,
Allen
,
C.
,
Besenbruch
,
G.
,
Brown
,
L.
,
Norman
,
J.
,
Sharp
,
R.
, and
McCorkle
,
K.
,
1982
, “
Preliminary Results From Bench-Scale Testing of a Sulfur-Iodine Thermochemical Water-Splitting Cycle
,”
Int. J. Hydrogen Energy
,
7
(
5
), pp.
381
392
. 10.1016/0360-3199(82)90048-9
23.
Norman
,
J. H.
,
Mysels
,
K. J.
,
Sharp
,
R.
, and
Williamson
,
D.
,
1982
, “
Studies of the Sulfur-Iodine Thermochemical Water-Splitting Cycle
,”
Int. J. Hydrogen Energy
,
7
(
7
), pp.
545
556
. 10.1016/0360-3199(82)90035-0
24.
Tamaura
,
Y.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
,
1995
, “
Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle
,”
Energy
,
20
(
4
), pp.
325
330
. 10.1016/0360-5442(94)00099-O
25.
Alvani
,
C.
,
Ennas
,
G.
,
La Barbera
,
A.
,
Marongiu
,
G.
,
Padella
,
F.
, and
Varsano
,
F.
,
2005
, “
Synthesis and Characterization of Nanocrystalline MnFe2O4: Advances in Thermochemical Water Splitting
,”
Int. J. Hydrogen Energy
,
30
(
13–14
), pp.
1407
1411
. 10.1016/j.ijhydene.2004.10.020
26.
Varsano
,
F.
,
Murmura
,
M. A.
,
Brunetti
,
B.
,
Padella
,
F.
,
La Barbera
,
A.
,
Alvani
,
C.
, and
Annesini
,
M. C.
,
2014
, “
Hydrogen Production by Water Splitting on Manganese Ferrite-Sodium Carbonate Mixture: Feasibility Tests in a Packed bed Solar Reactor-Receiver
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
20920
20929
. 10.1016/j.ijhydene.2014.10.105
27.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Soldiani
,
I.
, and
Kreetz
,
H.
,
2004
, “
Developing Ammonia Based Thermochemical Energy Storage for Dish Power Plants
,”
Sol. Energy
,
76
(
1–3
), pp.
331
337
. 10.1016/j.solener.2003.07.020
28.
Block
,
T.
,
Knoblauch
,
N.
, and
Schmucker
,
M.
,
2014
, “
The Cobalt-Oxide/Iron-Oxide Binary System for use as High Temperature Thermochemical Energy Storage Material
,”
Thermochim. Acta
,
577
, pp.
25
32
. 10.1016/j.tca.2013.11.025
29.
Buck
,
R.
,
Muir
,
J. F.
, and
Hogan
,
R. E.
,
1991
, “
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/Reactor: the CAESAR Project
,”
Solar Energy Mater.
,
24
(
1–4
), pp.
449
463
. 10.1016/0165-1633(91)90082-V
30.
Wörner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver–Reactor
,”
Catal. Today
,
46
(
2–3
), pp.
165
174
. 10.1016/S0920-5861(98)00338-1
31.
Giaconia
,
A.
,
Grena
,
R.
,
Lanchi
,
M.
,
Liberatore
,
R.
, and
Tarquini
,
P.
,
2007
, “
Hydrogen/Methanol Production by Sulfur-Iodine Thermochemical Cycle Powered by Combined Solar/Fossil Energy
,”
Int. J. Hydrogen Energy
,
32
(
4
), pp.
469
481
. 10.1016/j.ijhydene.2006.05.013
32.
Giaconia
,
A.
,
De Falco
,
M.
,
Caputo
,
G.
,
Grena
,
R.
,
Tarquini
,
P.
, and
Marrelli
,
L.
,
2008
, “
Solar Steam Reforming of Natural gas for Hydrogen Production Using Molten Salt Heat Carriers
,”
AIChE J.
,
54
(
7
), pp.
1932
1944
. 10.1002/aic.11510
33.
De Falco
,
M.
,
Giaconia
,
A.
,
Marrelli
,
L.
,
Tarquini
,
P.
,
Grena
,
R.
, and
Caputo
,
G.
,
2009
, “
Enriched Methane Production Using Solar Energy: an Assessment of Plant Performance
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
98
109
. 10.1016/j.ijhydene.2008.09.085
34.
Giaconia
,
A.
,
Monteleone
,
G.
,
Morico
,
B.
,
Salladini
,
A.
,
Shabtai
,
K.
,
Sheintuch
,
M.
,
Boettge
,
D.
,
Adler
,
J.
,
Palma
,
V.
,
Voutetakis
,
S.
,
Lemonidou
,
A.
,
Annesini
,
M. C.
,
Exter
,
M. D.
,
Balzer
,
H.
, and
Turchetti
,
L.
,
2015
, “
Multi-fuelled Solar Steam Reforming for Pure Hydrogen Production Using Solar Salts as Heat Transfer Fluid
,”
Energy Proc.
,
69
, pp.
1750
1758
. 10.1016/j.egypro.2015.03.144
35.
Turchetti
,
L.
,
Murmura
,
M. A.
,
Monteleone
,
G.
,
Giaconia
,
A.
,
Lemonidou
,
A. A.
,
Angeli
,
S. D.
,
Palma
,
V.
,
Ruocco
,
C.
, and
Annesini
,
M. C.
,
2016
, “
Kinetic Assessment of Ni-Based Catalysts in low-Temperature Methane/Biogas Steam Reforming
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
16865
16877
. 10.1016/j.ijhydene.2016.07.245
36.
Trieb
,
F.
,
Langnib
,
O.
, and
Klaib
,
H.
,
1997
, “
Solar Electricity Generation—A Comparative View of Technologies, Costs and Environmental Impact
,”
Sol. Energy
,
59
(
1–3
), pp.
89
99
. 10.1016/S0038-092X(97)80946-2
37.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
. 10.1115/1.1467921
38.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
. 10.1016/j.rser.2013.08.099
39.
Guene Lougou
,
B.
,
Shuai
,
Y.
,
Pan
,
R. M.
,
Chaffa
,
G.
, and
Tan
,
H. P.
,
2018
, “
Heat Transfer and Fluid Flow Analysis of Porous Medium Solar Thermochemical Reactor with Quartz Glass Cover
,”
Int. J. Heat Mass Transfer
,
127
, pp.
61
74
. 10.1016/j.ijheatmasstransfer.2018.06.153
40.
Guene Lougou
,
B.
,
Shuai
,
Y.
,
Pan
,
R. M.
,
Chaffa
,
G.
,
Ahouannou
,
C.
,
Zhang
,
H.
, and
Tan
,
H. P.
,
2018
, “
Radiative Heat Transfer and Thermal Characteristics of Fe-Based Oxides Coated SiC and Alumina RPC Structures as Integrated Solar Thermochemical Reactor
,”
Sci. China Technol. Sci.
,
61
(
12
), pp.
1788
1801
. 10.1007/s11431-018-9294-y
41.
Harris
,
J. A.
, and
Lenz
,
T. G.
,
1985
, “
Thermal Performance of Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
,
34
(
2
), pp.
135
142
. 10.1016/0038-092X(85)90170-7
42.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
,
50
(
1
), pp.
19
25
. 10.1016/0038-092X(93)90004-8
43.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for co-Production of Zinc and Synthesis gas
,”
Energy
,
23
(
10
), pp.
803
814
. 10.1016/S0360-5442(98)00026-7
44.
Shuai
,
Y.
,
Xia
,
X. L.
, and
Tan
,
H. P.
,
2008
, “
Radiation Performance of Dish Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
,
82
(
1
), pp.
13
21
. 10.1016/j.solener.2007.06.005
45.
Shuai
,
Y.
,
Wang
,
F. Q.
,
Xia
,
X. L.
,
Tan
,
H. P.
, and
Liang
,
Y. C.
,
2011
, “
Radiative Properties of a Solar Cavity Receiver/Reactor with Quartz Window
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12148
12158
. 10.1016/j.ijhydene.2011.07.013
46.
Lanchi
,
M.
,
Varsano
,
F.
,
Brunetti
,
B.
,
Murmura
,
M. A.
,
Annesini
,
M. C.
,
Turchetti
,
L.
, and
Grena
,
R.
,
2013
, “
Thermal Characterization of a Cavity Receiver for Hydrogen Production by Thermochemical Cycles Operating at Moderate Temperatures
,”
Sol. Energy
,
92
, pp.
256
268
. 10.1016/j.solener.2013.03.008
47.
Boyd
,
D. A.
,
Gajewski
,
R.
, and
Swift
,
R.
,
1976
, “
A Cylindrical Blackbody Solar Energy Receiver
,”
Sol. Energy
,
18
(
5
), pp.
395
401
. 10.1016/0038-092X(76)90004-9
48.
Barra
,
O. A.
, and
Franceschi
,
L.
,
1982
, “
The Parabolic Trough Plants Using Black Body Receivers: Experimental and Theoretical Analyses
,”
Sol. Energy
,
28
(
2
), pp.
163
171
. 10.1016/0038-092X(82)90295-X
49.
Melchior
,
T.
, and
Steinfeld
,
A.
,
2008
, “
Radiative Transfer Within a Cylindrical Cavity with Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021013
. 10.1115/1.2888755
50.
Bader
,
R.
,
Barbato
,
M.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2010
, “
An Air-Based Cavity-Receiver for Solar Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
031017
. 10.1115/1.4001675
51.
Bader
,
R.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2012
, “
Experimental and Numerical Heat Transfer Analysis of an Air-Based Cavity-Receiver for Solar Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021002
. 10.1115/1.4005447
52.
Mills
,
D. R.
,
1980
, “
Two-stage Tilting Solar Concentrators
,”
Sol. Energy
,
25
(
6
), pp.
505
509
. 10.1016/0038-092X(80)90082-1
53.
Collares-Pereira
,
M.
,
Gordon
,
J. M.
,
Rabl
,
A.
, and
Winston
,
R.
,
1991
, “
High Concentration two-Stage Optics for Parabolic Trough Solar Collectors with Tubular Absorber and Large rim Angle
,”
Sol. Energy
,
47
(
6
), pp.
457
466
. 10.1016/0038-092X(91)90114-C
54.
Gordon
,
J. M.
, and
Ries
,
H.
,
1993
, “
Tailored Edge-ray Concentrators as Ideal Second Stages for Fresnel Reflectors
,”
Appl. Opt.
,
32
(
13
), pp.
2243
2251
. 10.1364/AO.32.002243
55.
Spirkl
,
W.
,
Ries
,
H.
,
Muschawecka
,
J.
, and
Timinger
,
A.
,
1997
, “
Optimized Compact Secondary Reflectors for Parabolic Troughs with Tubular Absorbers
,”
Sol. Energy
,
61
(
3
), pp.
153
158
. 10.1016/S0038-092X(97)00047-9
56.
Gombert
,
A.
,
Glaubitt
,
W.
,
Rose
,
K.
,
Dreibholz
,
J.
,
Bläsi
,
B.
,
Heinzel
,
A.
,
Sporn
,
D.
,
Döll
,
W.
, and
Wittwer
,
V.
,
2000
, “
Antireflective Transparent Covers for Solar Devices
,”
Sol. Energy
,
68
(
4
), pp.
357
360
. 10.1016/S0038-092X(00)00022-0
57.
Perry
,
R. H.
,
Green
,
D. W.
, and
Maloney
,
J. O. H.
,
2008
,
Perry's Chemical Engineers’ Handbook
, 8th ed.,
McGraw-Hill
,
New York
.
58.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on new Results in Micro-Fluid Mechanics: an Example
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
935
937
. 10.1016/S0017-9310(02)00306-X
59.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
. 10.1016/j.ijheatmasstransfer.2004.04.016
60.
Esposito
,
S.
,
Antonaia
,
A.
,
Addonizio
,
M. L.
, and
Aprea
,
S.
,
2009
, “
Fabrication and Optimisation of Highly Efficient Cermet-Based Spectrally Selective Coatings for High Operating Temperature
,”
Thin Solid Films
,
517
(
21
), pp.
6000
6006
. 10.1016/j.tsf.2009.03.191
61.
Fernandez-García
,
A.
,
Cantos-Soto
,
M. E.
,
Röger
,
M.
,
Wieckert
,
C.
,
Hutter
,
C.
, and
Martínez-Arcos
,
L.
,
2014
, “
Durability of Solar Reflector Materials for Secondary Concentrators Used in CSP Systems
,”
Sol. Energy Mater. Sol. Cells
,
130
, pp.
51
63
. 10.1016/j.solmat.2014.06.043
You do not currently have access to this content.