Abstract

Low-temperature differential Stirling engines (LTDSE) are the gamma-type Stirling engines that can produce useful work from source temperatures less than 350 K, making them a preferred choice/device for solar energy utilization. An improved mathematical model to evaluate the performance of the solar-operated LTDSE has been developed by incorporating the top heat loss coefficient correlation with the finite-time thermodynamic model of the Stirling engine. In order to realize the internal imperfections of the thermodynamic Stirling cycle, the effect of the imperfect regeneration process is incorporated. Input parameters such as absorber plate temperature, irradiation, and geometrical features of the solar LTDSE are taken from real-time experimental data available in the literature. The effect of convective and radiation heat transfer coefficients of working fluid on maximum power output and thermal efficiency is determined to be significant and marginal, respectively. A comprehensive study of various working fluids and regenerator materials is carried out to investigate their impact on the performance of solar LTDSE. Helium is the best-working fluid, among air, hydrogen, ethane, and nitrogen for the considered model. Copper exhibited maximum regenerator effectiveness compared with Monel 400, aluminum, SS-304L.

References

References
1.
Kongtragool
,
B.
, and
Wongwises
,
S.
,
2007
, “
Performance of a Twin Power Piston Low Temperature Differential Stirling Engine Powered by a Solar Simulator
,”
Sol. Energy
,
81
(
7
), pp.
884
895
. 10.1016/j.solener.2006.11.004
2.
Orda
,
E.
, and
Mahkamov
,
K.
,
2004
, “
Development of ‘Low-Tech’ Solar Thermal Water Pumps for Use in Developing Countries
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
768
773
. 10.1115/1.1668015
3.
Minassians
,
D.
,
and Sanders
,
A.
, and
R
,
S.
,
2011
, “
Stirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), pp.
1
10
. 10.1115/1.4003144
4.
Wang
,
K.
,
Sanders
,
S. R.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2016
, “
Stirling Cycle Engines for Recovering Low and Moderate Temperature Heat: A Review
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
89
108
. 10.1016/j.rser.2016.04.031
5.
Hachem
,
H.
,
Gheith
,
R.
,
Aloui
,
F.
, and
Ben Nasrallah
,
S.
,
2018
, “
Technological Challenges and Optimization Efforts of the Stirling Machine: A Review
,”
Energy Convers. Manag.
,
171
(
June
), pp.
1365
1387
. 10.1016/j.enconman.2018.06.042
6.
McMahan
,
A.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2007
, “
A Finite-Time Thermodynamic Framework for Optimizing Solar-Thermal Power Plants
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
355
362
. 10.1115/1.2769689
7.
Tlili
,
I.
,
2012
, “
Finite Time Thermodynamic Evaluation of Endoreversible Stirling Heat Engine at Maximum Power Conditions
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2234
2241
. 10.1016/j.rser.2012.01.022
8.
Yaqi
,
L.
,
Yaling
,
H.
, and
Weiwei
,
W.
,
2011
, “
Optimization of Solar-Powered Stirling Heat Engine With Finite-Time Thermodynamics
,”
Renewable Energy
,
36
(
1
), pp.
421
427
. 10.1016/j.renene.2010.06.037
9.
Ahmadi
,
M. H.
,
Sayyaadi
,
H.
,
Dehghani
,
S.
, and
Hosseinzade
,
H.
,
2013
, “
Designing a Solar Powered Stirling Heat Engine Based on Multiple Criteria: Maximized Thermal Efficiency and Power
,”
Energy Convers. Manag.
,
75
, pp.
282
291
. 10.1016/j.enconman.2013.06.025
10.
Dai
,
D. D.
,
Yuan
,
F.
,
Long
,
R.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2018
, “
Imperfect Regeneration Analysis of Stirling Engine Caused by Temperature Differences in Regenerator
,”
Energy Convers. Manag.
,
158
, pp.
60
69
. 10.1016/j.enconman.2017.12.032
11.
Boutammachte
,
N.
, and
Knorr
,
J.
,
2012
, “
Field-Test of a Solar Low Delta-T Stirling Engine
,”
Sol. Energy
,
86
(
6
), pp.
1849
1856
. 10.1016/j.solener.2012.03.001
12.
Kerdchang
,
P.
,
MaungWin
,
M.
,
Teekasap
,
S.
,
Hirunlabh
,
J.
,
Khedari
,
J.
, and
Zeghmati
,
B.
,
2005
, “
Development of a New Solar Thermal Engine System for Circulating Water for Aeration
,”
Sol. Energy
,
78
(
4 SPEC. ISS.
), pp.
518
527
. 10.1016/j.solener.2004.07.010
13.
Mullick
,
S. C.
, and
Samdarshi
,
S. K.
,
1988
, “
An Improved Technique for Computing the Top Heat Loss Factor of a Flat-Plate Collector With a Single Glazing
,”
Sol. Energy
,
110
(
262–267
). 10.1115/1.3268266
14.
Akhtar
,
N.
, and
Mullick
,
S. C.
,
1999
, “
Approximate Method for Computation of Glass Cover Temperature and Top Heat-Loss Coefficient of Solar Collectors With Single Glazing
,”
Sol. Energy
,
66
(
5
), pp.
349
354
. 10.1016/S0038-092X(99)00032-8
15.
Gheith
,
R.
,
Aloui
,
F.
, and
Ben Nasrallah
,
S.
,
2014
, “
Study of Temperature Distribution in a Stirling Engine Regenerator
,”
Energy Convers. Manag.
,
88
, pp.
962
972
. 10.1016/j.enconman.2014.09.043
You do not currently have access to this content.