Abstract

This study focuses on the techno-economic optimization of direct molten salt parabolic trough solar thermal power plants (STPPs) equipped with thermocline filler (TCF) thermal energy storage (TES). On one hand, this technology allows for cost reductions compared with state of the art two-tank (2T) TES. On the other hand, however, it leads to a performance decrease of the power block (PB) due to partial part load operation. To evaluate the dominating effect, annual simulations on a system level are performed for the TCF direct molten salt storage concept and, as a reference, for the two-tank direct molten salt storage concept. The levelized cost of electricity (LCOE) serves as a global measure to compare the two systems and to optimally size the TCF storage and the solar field (SF). The result of this study is that LCOE can theoretically be reduced by up to 8% by using a TCF instead of 2T storage system. The influence of temperature deviations from the nominal value at the end of charge or discharge, porosity and particle diameter of the TCF on LCOE, and system behavior is investigated in detail. This study further presents alternative operation strategies with improved system behavior and reveals determining factors for the integration of TCF storage into a system.

References

References
1.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
(
5–6
), pp.
883
893
. 10.1016/S0360-5442(03)00193-2
2.
Dieckmann
,
S.
,
Dersch
,
J.
,
Giuliano
,
S.
,
Puppe
,
M.
,
Lüpfert
,
E.
,
Hennecke
,
K.
, and
Ralon
,
P.
,
2017
, “
LCOE Reduction Potential of Parabolic Trough and Solar Tower CSP Technology Until 2025
,”
In AIP Conf. Proc.
,
1850
(
1
), p.
160004
. 10.1063/1.4984538
3.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), p.
153
159
. 10.1115/1.1464123
4.
Kolb
,
G. J.
,
2011
, “
Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage Systems for Trough Plants
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031023
. 10.1115/1.4004239
5.
Biencinto
,
M.
,
Bayón
,
R.
,
Rojas
,
E.
, and
González
,
L.
,
2014
, “
Simulation and Assessment of Operation Strategies for Solar Thermal Power Plants With a Thermocline Storage Tank
,”
Sol. Energy
,
103
(
4
), pp.
456
472
. 10.1016/j.solener.2014.02.037
6.
Geissbühler
,
L.
,
Mathur
,
A.
,
Mularczyk
,
A.
, and
Haselbacher
,
A.
,
2018
, “
An Assessment of Thermocline-Control Methods for Packed-Bed Thermal-Energy Storage in CSP Plants, Part 1: Method Descriptions
,”
Sol. Energy
,
178
(
1
), pp.
1
10
. 10.1016/j.solener.2018.12.015
7.
Geissbühler
,
L.
,
Mathur
,
A.
,
Mularczyk
,
A.
, and
Haselbacher
,
A.
,
2018
, “
An Assessment of Thermocline-Control Methods for Packed-Bed Thermal-Energy Storage in CSP Plants, Part 2: Assessment Strategy and Results
,”
Sol. Energy
,
178
(
1
), pp.
1
14
. 10.1016/J.SOLENER.2018.12.016
8.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
,
Garimella
,
S. V.
, and
Pacheco
,
J. E.
,
2014
, “
System-Level Simulation of a Solar Power Tower Plant With Thermocline Thermal Energy Storage
,”
Appl. Energy
,
113
(
1
), pp.
86
96
. 10.1016/j.apenergy.2013.07.004
9.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
, and
Garimella
,
S. V.
,
2013
, “
Economic Optimization of a Concentrating Solar Power Plant With Molten-Salt Thermocline Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011015
. 10.1115/1.4025516
10.
Fasquelle
,
T.
,
Falcoz
,
Q.
,
Neveu
,
P.
, and
Hoffmann
,
J. F.
,
2018
, “
A Temperature Threshold Evaluation for Thermocline Energy Storage in Concentrated Solar Power Plants
,”
Appl. Energy
,
212
(
4
), pp.
1153
1164
. 10.1016/j.apenergy.2017.12.105
11.
Bruch
,
A.
,
Fourmigue
,
J. F.
,
Couturier
,
R.
, and
Molina
,
S.
,
2013
, “
Experimental and Numerical Investigation of Stability of Packed Bed Thermal Energy Storage for CSP Power Plant
,”
In Energy Procedia
,
49
(
5
), pp.
743
751
. 10.1016/j.egypro.2014.03.080
12.
Bruch
,
A.
,
Fourmigué
,
J. F.
, and
Couturier
,
R.
,
2014
, “
Experimental and Numerical Investigation of a Pilot-Scale Thermal Oil Packed Bed Thermal Storage System for CSP Power Plant
,”
Sol. Energy
,
105
(
7
), pp.
116
125
. 10.1016/j.solener.2014.03.019
13.
Bruch
,
A.
,
Molina
,
S.
,
Esence
,
T.
,
Fourmigué
,
J. F.
, and
Couturier
,
R.
,
2017
, “
Experimental Investigation of Cycling Behaviour of Pilot-Scale Thermal Oil Packed-Bed Thermal Storage System
,”
Renewable Energy
,
103
(
4
), pp.
277
285
. 10.1016/j.renene.2016.11.029
14.
Hoffmann
,
J. F.
,
Fasquelle
,
T.
,
Goetz
,
V.
, and
Py
,
X.
,
2016
, “
A Thermocline Thermal Energy Storage System With Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales
,”
Appl. Therm. Eng.
,
100
(
9
), pp.
753
761
. 10.1016/j.applthermaleng.2016.01.110
15.
Hoffmann
,
J. F.
,
Fasquelle
,
T.
,
Goetz
,
V.
, and
Py
,
X.
,
2017
, “
Experimental and Numerical Investigation of a Thermocline Thermal Energy Storage Tank
,”
Appl. Therm. Eng.
,
114
(
5
), pp.
896
904
. 10.1016/j.applthermaleng.2016.12.053
16.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Parametric Study and Standby Behavior of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Renewable Energy
,
48
(
12
), pp.
1
9
. 10.1016/j.renene.2012.04.017
17.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
(
4
), pp.
65
75
. 10.1016/j.apenergy.2011.11.002
18.
Abdulla
,
A.
, and
Reddy
,
K. S.
,
2017
, “
Effect of Operating Parameters on Thermal Performance of Molten Salt Packed-Bed Thermocline Thermal Energy Storage System for Concentrating Solar Power Plants
,”
Int. J. Therm. Sci.
,
121
(
11
), pp.
30
44
. 10.1016/j.ijthermalsci.2017.07.004
19.
Strasser
,
M. N.
, and
Selvam
,
R. P.
,
2014
, “
A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems
,”
Sol. Energy
,
108
(
10
), pp.
390
402
. 10.1016/j.solener.2014.07.023
20.
González
,
I.
,
Pérez-Segarra
,
C. D.
,
Lehmkuhl
,
O.
,
Torras
,
S.
, and
Oliva
,
A.
,
2016
, “
Thermo-Mechanical Parametric Analysis of Packed-Bed Thermocline Energy Storage Tanks
,”
Appl. Energy
,
179
(
18
), pp.
1106
1122
. 10.1016/j.apenergy.2016.06.124
21.
Cocco
,
D.
, and
Serra
,
F.
,
2015
, “
Performance Comparison of Two-Tank Direct and Thermocline Thermal Energy Storage Systems for 1MWe Class Concentrating Solar Power Plants
,”
Energy
,
81
(
3
), pp.
526
536
. 10.1016/j.energy.2014.12.067
22.
Klasing
,
F.
,
Odenthal
,
C.
,
Trost
,
B.
,
Hirsch
,
T.
, and
Bauer
,
T.
,
2018
, “
Techno-Economic Assessment for Large Scale Thermocline Filler TES Systems in a Molten Salt Parabolic Trough Plant
,”
AIP Conference Proceedings
,
2033
(
1
), p.
90017
. 10.1063/1.5067111
23.
Odenthal
,
C.
,
Klasing
,
F.
, and
Bauer
,
T.
,
2017
, “
Demonstrating Cost Effective Thermal Energy Storage in Molten Salts: DLR’s TESIS Test Facility
,”
In Energy Procedia
,
135
(
30
), pp.
14
22
. 10.1016/j.egypro.2017.09.483
24.
Odenthal
,
C.
,
Klasing
,
F.
, and
Bauer
,
T.
,
2018
, “
Parametric Study of the Thermocline Filler Concept Based on Exergy
,”
J. Energy Storage
,
17
(
3
), pp.
56
62
. 10.1016/j.est.2018.01.009
25.
Hirsch
,
T.
,
Bachelier
,
C.
,
Eck
,
M.
,
Dersch
,
J.
,
Fluri
,
T.
,
Giuliano
,
S.
, and
Yu
,
Q.
,
2017
, “
The First Version of the SolarPACES Guideline for Bankable STE Yield Assessment
,”
AIP Conference Proceedings
,
1850
(
1
). 10.1063/1.4984548
26.
Previsic
,
M.
,
2011
,
Economic Methodology for the Evaluation of Emerging Renewable Technologies
, Retrieved from http://energy.sandia.gov/wp-content//gallery/uploads/Re-Vision-Economic-Methodology-for-the-Evaluation-of-Emerging-Renewable-Technologies-MP-11-9-11.pdf, Accessed September 2018.
27.
Sauter
,
J.
,
1926
,
Die Grössenbestimmung der im Gemischnebel von Verbrennungskraftmaschinen vohrhandenen Brennstoffteilchen: (Mitteilung aus dem Laboratorium für Technische Physik der Technischen Hochschule München), VDI-Verlag
.
28.
Giuliano
,
S.
,
Puppe
,
M.
,
Schenk
,
H.
,
Hirsch
,
T.
,
Moser
,
M.
,
Fichter
,
T.
, and
Afanasyeva
,
S.
,
2016
,
THERMVOLT—Systemvergleich von solarthermischen und photovoltaischen Kraftwerken für die Versorgungssicherheit. Stuttgart
, Retrieved from https://www.researchgate.net/profile/Christian_Breyer/publication/320565313_THERMVOLT_-_Systemvergleich_von_solarthermischen_und_photovoltaischen_Kraftwerken_fur_die_Versorgungssicherheit/links/59ee1add0f7e9b36957594fe/THERMVOLT-Systemvergleich-von-solarthermischen-und-photovoltaischen-Kraftwerken-fuer-die-Versorgungssicherheit.pdf, Accessed September 2018.
29.
Glatzmaier
,
G.
,
2011
,
Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage
, Retrieved from http://www.osti.gov/scitech/biblio/1031953, Accessed September 2018.
30.
Wakao
,
N.
,
1976
, “
Particle-to-Fluid Transfer Coefficients and Fluid Diffusivities at Low Flow Rate in Packed Beds
,”
Chem. Eng. Sci.
,
31
(
12
), pp.
1115
1122
. 10.1016/0009-2509(76)85021-X
31.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
1
), pp.
89
94
.
32.
Quaschning
,
V.
,
Ortmanns
,
W.
,
Kistner
,
R.
, and
Geyer
,
M.
,
2001
, “
Greenius: A New Simulation Environment for Technical and Economical Analysis of Renewable Independent Power Projects
,”
Proceedings of ASME International Solar Energy Conference Solar Forum
,
Washington DC
,
Apr. 22–25
.
33.
Schweitzer
,
A.
,
Schiel
,
W.
,
Birkle
,
M.
,
Nava
,
P.
,
Riffelmann
,
K. J.
,
Wohlfahrt
,
A.
, and
Kuhlmann
,
G.
,
2014
, “
ULTIMATE TROUGH®—Fabrication, Erection and Commissioning of the World’s Largest Parabolic Trough Collector
,”
Energy Procedia
,
49
(
1
), pp.
1848
1857
. 10.1016/j.egypro.2014.03.196
34.
Bonk
,
A.
,
Sau
,
S.
,
Uranga
,
N.
,
Hernaiz
,
M.
, and
Bauer
,
T.
,
2018
, “
Advanced Heat Transfer Fluids for Direct Molten Salt Line-Focusing CSP Plants
,”
Prog. Energy Combust. Sci.
,
67
(
4
), pp.
1339
1351
. 10.1016/j.pecs.2018.02.002
35.
Hartlieb
,
P.
,
Toifl
,
M.
,
Kuchar
,
F.
,
Meisels
,
R.
, and
Antretter
,
T.
,
2016
, “
Thermo-Physical Properties of Selected Hard Rocks and Their Relation to Microwave-Assisted Comminution
,”
Miner. Eng.
,
91
(
7
), pp.
34
41
. 10.1016/j.mineng.2015.11.008
36.
Gauss
,
C. F.
,
1831
, “
Besprechung des Buchs von L.A. Seeber: Untersuchungen über die Eigenschaften der Positiven Ternären Quadratischen Formen usw
,”
Göttingsche Gelehrte Anzeigen
,
2
(
1
). 10.1515/crll.1840.20.312
37.
Wang
,
S.
, and
Riemann
,
L.
,
2018
,
Thermal Power Plant Flexibility, A Publication Under the Clean Energy Ministerial Campaign
, https://www.cleanenergyministerial.org/sites/default/files/2018-06/APPF%20Campaign_2018%20Thermal%20Power%20Plant%20Flexibility%20Report_cleanenergyministerial.org__0.pdf, Accessed September 2018.
You do not currently have access to this content.