Abstract

This paper describes the development and performance assessment of a tower solar collector driven integrated system operating in trigeneration mode to generate electricity, heating, and cooling, in a carbon-free manner. The proposed system applies a heliostat-based central receiver unit as a base of solar energy input to drive the steam Rankine cycle which is combined with the process heater and the lithium bromide-water operated absorption chiller. An analysis is performed to monitor the behavior of energy and exergy efficiency at various operating conditions of the proposed trigeneration system. The computed results are authenticated with the reported literature. A comparison is made between the present findings and reported results in the form of exergy efficiency, total exergy destroyed, and energy efficiency. Consideration of process heat and cold along with electricity provides a promising increase in energy efficiency from 15.8% to 64.1% while the exergy efficiency is enhanced from 16.9% to 24.4%. Variation in direct normal irradiations from 600 W/m2 to 1000 W/m2 results in the significant rise of energetic and exergetic outcomes of the proposed trigeneration system. Out of 100% solar exergy supplied to the proposed trigeneration, 24% is generated as the exergetic output, 1.6% is lost to ambient, and the remaining 74.4% is the exergy destroyed in the system components.

References

References
1.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
(
2
), pp.
121
129
. 10.1016/S0038-092X(97)00107-2
2.
Baghernejad
,
A.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2016
, “
Exergoeconomic Comparison of Three Novel Trigeneration Systems Using SOFC, Biomass and Solar Energies
,”
Appl. Therm. Eng.
,
104
, pp.
534
555
. 10.1016/j.applthermaleng.2016.05.032
3.
Huang
,
W.
,
Hu
,
P.
, and
Chen
,
Z.
,
2012
, “
Performance Simulation of a Parabolic Trough Solar Collector
,”
Sol. Energy
,
86
(
2
), pp.
746
755
. 10.1016/j.solener.2011.11.018
4.
Xu
,
Q.
,
Li
,
L.
,
Li
,
H.
,
Huang
,
W.
, and
Li
,
Y.
,
2014
, “
Performance Comparison of Solar Parabolic Trough System with Glass and Film Reflector
,”
Energy Convers. Manage.
,
85
, pp.
581
590
. 10.1016/j.enconman.2014.05.042
5.
Duan
,
L.
,
Yu
,
X.
,
Jia
,
S.
,
Wang
,
B.
, and
Zhang
,
J.
,
2017
, “
Performance Analysis of a Tower Solar Collector-Aided Coal Fired Power Generation System
,”
Energy Sci. Eng.
,
5
(
1
), pp.
38
50
. 10.1002/ese3.147
6.
Rabbani
,
M.
,
Ratlamwala
,
T. A. H.
, and
Dincer
,
I.
,
2015
, “
Transient Energy and Exergy Analyses of a Solar Based Integrated System
,”
J. Sol. Energy T. ASME
,
137
(
1
), p.
011010
. 10.1115/1.4028072
7.
Al-Ali
,
M.
, and
Dincer
,
I.
,
2014
, “
Energetic and Exergetic Studies of a Multigenerational Solar-Geothermal System
,”
Appl. Therm. Eng
,
71
(
1
), pp.
16
23
. 10.1016/j.applthermaleng.2014.06.033
8.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Analysis and Optimization of a Solar Driven Trigeneration System Based on ORC and Absorption Heat Pump
,”
J. Cleaner Prod.
,
161
, pp.
493
509
. 10.1016/j.clepro.2017.05.159
9.
Malik
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Development and Analysis of a new Renewable Energy Based Multi-Generation System
,”
Energy
,
79
, pp.
90
99
. 10.1016/j.energy.2014.10.057
10.
Khaliq
,
A.
, and
Choudhary
,
K.
,
2009
, “
Thermodynamic Evaluation of Gas Turbines for Cogeneration Applications
,”
Int. J. Exergy
,
6
(
1
), pp.
15
33
. 10.1504/IJEX.2009.023342
11.
Bruno
,
J. C.
,
Ortega-Lopez
,
V.
, and
Coronas
,
A.
,
2009
, “
Integration of Absorption Cooling Systems Into Micro-gas Turbine Trigeneration System Using Biogas: Case Study of a Sewage Treatment Plant
,”
Appl. Energy
,
86
(
6
), pp.
837
847
. 10.1016/j.apenergy.2008.08.007
12.
Wang
,
J.
,
Dai
,
Y.
,
Gao
,
L.
, and
Ma
,
S.
,
2009
, “
A new Combined Cooling, Heating and Power System Driven by Solar Energy
,”
Renewable Energy
,
34
(
12
), pp.
2780
2788
. 10.1016/j.renene.2009.06.010
13.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Exergy Analysis, Parametric Analysis and Optimization for a Novel Combined Power and Ejector Refrigeration Cycle
,”
Appl. Therm. Energy
,
29
(
10
), pp.
1983
1990
. 10.1016/j.applthermaleng.2008.09.016
14.
Khaliq
,
A.
,
Kumar
,
R.
,
Dincer
,
I.
, and
Khalid
,
F.
,
2014
, “
Energy and Exergy Analysis of a New Triple Staged Refrigeration Thermodynamic Cycle Using Solar Heat Source
,”
J. Sol. Energy T. ASME
,
136
(
1
), pp.
1
11
. 10.1115/1.4024126
15.
Grosu
,
L.
,
Marin
,
A.
,
Dobrovicescu
,
A.
, and
Oueiros-code
,
D.
,
2015
, “
Exergy Analysis of a Solar Combined Cycle: Organic Rankine Cycle and Absorption Cooling System
,”
Int. J. Energy Environ. Eng.
,
7
, pp.
449
459
. 10.1007/s40095-015-0168-y
16.
Khaliq
,
A.
,
Kumar
,
R.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Investigation on a Solar Thermal Power and Ejector-Absorption Refrigeration System Based on First and Second law Analyses
,”
Energy
,
164
, pp.
1030
1043
. 10.1016/j.energy.2018.09.049
17.
Zhang
,
T.
, and
Mohamed
,
S.
,
2015
, “
Conceptual Design and Analysis of Hydrocarbon-Based Solar Thermal Power and Ejector Cooling Systems in Hot Climates
,”
J. Sol. Energy T. ASME
,
137
(
2
), p.
021001
. 10.1115/1.4028365
18.
Buck
,
R.
, and
Friedman
,
S.
,
2007
, “
Solar-Assisted Small Solar Tower Trigeneration Systems
,”
J. Sol. Energy T. ASME
,
129
(
4
), pp.
349
354
. 10.1115/1.2769688
19.
Havelsky
,
V.
,
1999
, “
Energetic Efficiency of Cogeneration Systems for Combined Heat, Cold and Power Production
,”
Int. J. Refrig.
,
22
(
6
), pp.
479
485
. 10.1016/S0140-7007(99)00010-9
20.
Khaliq
,
A.
,
Mokheimer
,
E. M. A.
, and
Yaqub
,
M.
,
2019
, “
Thermodynamic Investigations on a Novel Solar Powered Trigeneration Energy System
,”
Energy Convers. Manage.
,
188
, pp.
398
413
. 10.1016/j.enconman.2019.03.026
21.
Zhai
,
H.
,
Dai
,
Y. J.
,
Wu
,
J. Y.
, and
Wang
,
R. Z.
,
2009
, “
Energy and Exergy Analyses on a Novel Hybrid Solar Heating, Cooling and Power Generation System for Remote Areas
,”
Appl. Energy
,
86
(
9
), pp.
1395
1404
. 10.1016/j.apenergy.2008.11.020
22.
Kanoglu
,
M.
, and
Dincer
,
I.
,
2009
, “
Performance Assessment of Cogeneration Plants
,”
Energy Convers. Manage.
,
50
(
1
), pp.
76
81
. 10.1016/j.enconman.2008.08.029
23.
Eisavi
,
B.
,
Khalilarya
,
S.
,
Chitsaz
,
A.
, and
Rosen
,
M. A.
,
2018
, “
Thermodynamic Analysis of a Novel Combined Cooling, Heating and Power System Driven by Solar Energy
,”
Appl. Therm. Eng.
,
129
, pp.
1219
1229
. 10.1016/j.applthermaleng.2017.10.132
24.
Pacio
,
J.
,
Singer
,
C. S.
,
Wetzei
,
T. H.
, and
Uhlig
,
R.
,
2013
, “
Thermodynamic Evaluation of Liquid Metals as Heat Transfer Fluids in Concentrated Solar Power Plants
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
295
302
. 10.1016/j.applthermaleng.2013.07.010
25.
NIST Standard Reference Database 23, NIST thermodynamic and transport properties of refrigerants and refrigerants mixture, REFPROP version 6.01
;
1998
.
26.
Khaliq
,
A.
,
Agrawal
,
B. K.
, and
Kumar
,
R.
,
2012
, “
First and Second Law Investigation of Waste Heat Based Combined Power and Ejector-Absorption Refrigeration Cycle
,”
Int. J. Refrig.
,
35
(
1
), pp.
88
97
. 10.1016/j.ijrefrig.2011.08.005
27.
Klein
,
S. A.
,
2012
,
Engineering Equation Solver (EES) for Microsoft Windows operating systems: Academic professional version
.
F-chart software
,
Medison, W.I.
http://www.fchart.com.
28.
Khaliq
,
A.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2018
, “
Energy and Exergy Analyses of a Solar Powered Multi-Effect Cooling Cycle
,”
Int. J. Exergy
,
27
(
4
), pp.
500
526
. 10.1504/IJEX.2018.096015
29.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2011
, “
Exergy Modelling of a new Solar Driven Trigeneration System
,”
Sol. Energy
,
85
(
9
), pp.
2228
2243
. 10.1016/j.solener.2011.06.009
30.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
. 10.1016/S0038-092X(03)00226-3
You do not currently have access to this content.