Abstract

Sustainable power generation on solar photovoltaic (SPV) modules integrated lighter-than-air platforms (LTAPs) is a daunting task since they are exposed to variable environmental factors such as wind, ambient air pressure, and incident solar insolation. Among these factors, the wind plays a significant role in destabilizing the system from its equilibrium position and affects the power generation. In this paper, we proposed a methodology for estimating the dynamics of power generation due to the destabilized pitching under different wind vectors. An alternative to the conventional fluid–structure interaction, a semi-analytical methodology has been formulated, utilizing commercial ansys fluent software, to estimate the pitching characteristics of lighter-than-air platform (LTAP). This pitching characteristic has been mapped to the body inertial frame for investigating the incident solar insolation followed by determining the corresponding power generation. The consequences of the envelope contour function (ECF) are also incorporated while characterizing the power generation. Furthermore, this study also provides scope for the placement of the solar PV array on LTAP in order to minimize losses in generated onboard power under variable pitching conditions.

References

References
1.
Liao
,
L.
, and
Pasternak
,
I.
,
2009
, “
A Review of Airship Structural Research and Development
,”
Prog. Aeronaut. Sci.
,
45
(
4–5
), pp.
83
96
. 10.1016/j.paerosci.2009.03.001
2.
Khoury
,
G. A.
, and
Gillet
,
J. D.
,
1999
, “
Airship Technology
,”
Cambridge Aerospace Series
,
10
, pp.
1
54
.
3.
Stockbridge
,
C.
,
Ceruti
,
A.
, and
Marzocca
,
P.
,
2012
, “
Airship Research and Development in the Areas of Design, Structures, Dynamics and Energy Systems
,”
Int. J. Aeronaut. Space Sci.
,
13
(
2
), pp.
170
187
. 10.5139/ijass.2012.13.2.170
4.
Mueller
,
J.
,
Paluszek
,
M.
, and
Zhao
,
Y.
,
2004
, “
Development of an Aerodynamic Model and Control law Design for a High Altitude Airship
,”
AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit
,
Chicago, IL
,
Sept. 20–23
, p.
6479
.
5.
Li
,
Y.
,
Nahon
,
M.
, and
Sharf
,
I.
,
2011
, “
Airship Dynamics Modeling: A Literature Review
,”
Prog. Aeronaut. Sci.
,
47
(
3
), pp.
217
239
. 10.1016/j.paerosci.2010.10.001
6.
Lambert
,
C.
, and
Nahon
,
M.
,
2003
, “
Stability Analysis of a Tethered Aerostat
,”
J. Aircr.
,
40
(
4
), pp.
705
715
. 10.2514/2.3149
7.
Rajani
,
A.
,
Pant
,
R. S.
, and
Sudhakar
,
K.
,
2010
, “
Dynamic Stability Analysis of a Tethered Aerostat
,”
J. Aircr.
,
47
(
5
), pp.
1531
1538
. 10.2514/1.47010
8.
Docimo
,
A.
, and
Rahn
,
C. D.
,
2004
, “
Nonlinear Dynamic Simulation and Stress Prediction for a Tethered Aerostat
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
,
American Society of Mechanical Engineers
,
New York
, pp.
329
334
.
9.
Jones
,
S. P.
, and
Schroeder
,
L. D.
,
2001
, “
Nonlinear Dynamic Simulation of a Tethered Aerostat: A Fidelity Study
,”
J. Aircr.
,
38
(
1
), pp.
64
68
. 10.2514/2.2735
10.
Krausman
,
J.
,
Jones
,
S.
, and
Sunkara
,
B.
,
1985
, “
Dynamic Characteristics of the STARS Aerostat
,”
6th Lighter-Than-Air Systems Conference
,
Norfolk, VA
,
June 26–July 28
, p.
880
.
11.
Jones
,
S. P.
, and
Krausman
,
J. A.
,
1982
, “
Nonlinear Dynamic Simulation of a Tethered Aerostat
,”
J. Aircr.
,
19
(
8
), pp.
679
686
. 10.2514/3.57449
12.
de Azevedo
,
B.
,
2013
, “
Stability and Active Control of Low Altitude Aerostats
,”
AIAA Lighter-Than-Air Systems Technology (LTA) Conference
,
Daytona Beach, FL
,
Mar. 25–28
, p.
1299
.
13.
Jones
,
S. P.
, and
DeLaurier
,
J. D.
,
1983
, “
Aerodynamic Estimation Techniques for Aerostats and Airships
,”
J. Aircr.
,
20
(
2
), pp.
120
126
. 10.2514/3.44840
14.
Chan
,
S. C.
,
Hunt
,
J. D.
, and
Shervington
,
K.
,
2013
, “
Wind Tunnel Study of a Large Aerostat, CFD Validation
,”
AIAA Lighter-Than-Air Systems Technology (LTA) Conference
,
Daytona Beach, FL
,
Mar. 25–28
, p.
1339
.
15.
Aglietti
,
G. S.
,
Markvart
,
T.
,
Tatnall
,
A. R.
, and
Walker
,
S. J.
,
2008
, “
Solar Power Generation Using High Altitude Platforms Feasibility and Viability
,”
Prog. Photovoltaics
,
16
(
4
), pp.
349
359
. 10.1002/pip.815
16.
Aglietti
,
G. S.
,
Markvart
,
T.
,
Tatnall
,
A. R.
, and
Walker
,
S. J.
,
2008
, “
Aerostat for Electrical Power Generation—Concept Feasibility
,”
Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng.
,
222
(
1
), pp.
29
39
10.1243/09544100JAERO258.
17.
Aglietti
,
G. S.
,
Redi
,
S.
,
Tatnall
,
A. R.
, and
Markvart
,
T.
,
2008
, “
High Altitude Electrical Power Generation
,”
WSEAS Trans. Environ. Dev.
,
4
(
12
), pp.
1067
1077
. 10.1109/epec.2009.5420773
18.
Aglietti
,
G. S.
,
Redi
,
S.
,
Tatnall
,
A. R.
, and
Markvart
,
T.
,
2009
, “
Harnessing High-Altitude Solar Power
,”
IEEE Trans. Energy Conv.
,
24
(
2
), pp.
442
451
. 10.1109/TEC.2009.2016026
19.
Lv
,
M.
,
Li
,
J.
,
Du
,
H.
,
Zhu
,
W.
, and
Meng
,
J.
,
2017
, “
Solar Array Layout Optimization for Stratospheric Airships Using Numerical Method
,”
Energy Convers. Manage.
,
135
, pp.
160
169
. 10.1016/j.enconman.2016.12.080
20.
Kungl
,
P.
,
Schlenker
,
M.
,
Wimmer
,
D.-A.
, and
Kröplin
,
B. H.
,
2004
, “
Instrumentation of Remote Controlled Airship “Lotte” for in-Flight Measurements
,”
Aerosp. Sci. Technol.
,
8
(
7
), pp.
599
610
. 10.1016/j.ast.2004.06.004
21.
Ghosh
,
K.
,
Guha
,
A.
, and
Duttagupta
,
S. P.
,
2017
, “
Power Generation on a Solar Photovoltaic Array Integrated With Lighter-Than-air Platform at Low Altitudes
,”
Energy Convers. Manage.
,
154
, pp.
286
298
. 10.1016/j.enconman.2017.10.039
22.
Sharma
,
P.
,
Patnaik
,
B.
,
Duttagupta
,
S. P.
, and
Agarwal
,
V.
,
2010
, “
Dynamic Power Optimization of Contoured Flexible PV Array Under non-Uniform Illumination Conditions
,”
35th IEEE Photovoltaic Specialists Conference (PVSC)
,
Honolulu, HI
,
June 20–25
, pp.
968
972
.
23.
Sharma
,
P.
,
Duttagupta
,
S. P.
, and
Agarwal
,
V.
,
2012
, “
A Novel and Universal Model for Accurate Prediction of PV Module Characteristics for Power Optimization Under Various Design Layouts and Dynamic Environmental Conditions
,”
2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)
,
Bengaluru, India
,
Dec. 16–19
, pp.
1
6
.
24.
Ghosh
,
K.
,
Guha
,
A.
, and
Duttagupta
,
S. P.
,
2014
, “
Solar PV Integrated Lighter-Than-air Platform (LTAP) for Airborne Power Generation
,”
29th EUPVSEC
,
Amsterdam, Netherlands
,
Sept. 22–26
, pp.
3829
3833
.
25.
Lv
,
M.
,
Li
,
J.
,
Zhu
,
W.
,
Du
,
H.
,
Meng
,
J.
, and
Sun
,
K.
,
2017
, “
A Theoretical Study of Rotatable Renewable Energy System for Stratospheric Airship
,”
Energy Convers. Manage.
,
140
, pp.
51
61
. 10.1016/j.enconman.2017.02.069
26.
Kale
,
S.
,
Joshi
,
P.
, and
Pant
,
R.
,
2005
, “
A Generic Methodology for Determination of Drag Coefficient of an Aerostat Envelope Using CFD
,”
AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences
,
Arlington, VA
,
Sept. 26–28
, p.
7442
.
27.
Gill
,
P.
,
Malik
,
S.
, and
Pant
,
R. S.
,
2001
, “
Estimation of Aerodynamic Characteristics of un-Symmetrically Finned Bodies of Revolutions
,”
28th National Conference on Fluid Mechanics and Fluid Power
,
PEC, Chandigarh, India
,
Dec. 5–7
.
28.
Greschner
,
B.
,
Yu
,
C.
,
Zheng
,
S.
,
Zhuang
,
M.
,
Wang
,
Z. J.
, and
Thiele
,
F.
,
2005
, “
Knowledge Based Airfoil Aerodynamic and Aeroacoustic Design
,”
11th AIAA/CEAS Aeroacoustics Conference
,
Monterey, CA
,
May 23–25
, p.
2968
.
29.
Munk
,
M. M
,
1936
. “Aerodynamics of Airships.”
Aerodynamic Theory
,
Springer
,
Berlin
, pp.
32
48
.
30.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag: Theoretical, Experimental and Statistical Information
,
Hoerner Fluid Dynamics
.
31.
Raymer
,
D.
,
1989
, “
Aircraft Design, A Conceptual Approach. AIAA Education Series. AIAA
.” pp.
262
267
.
32.
Putman
,
W. F.
,
Maughmer
,
M.
,
Curtiss
,
H. C.
, Jr.
, and
Traybar
,
J. J.
,
1977
,
Aerodynamics and Hovering Control of LTA Vehicles
,
Dept of Aerospace and Mechanical Sciences
,
Princeton University, NJ
.
You do not currently have access to this content.