Abstract

The heat storage technology can improve the performance of a solar thermal utilization system effectively. This work studied the effect of phase-change materials (PCMs) on thermal stratification in a heat storage tank. A 60 l sodium acetate trihydrate heat storage tank with 331.15 K phase-change temperature was designed and fabricated. A mathematical model was built to simulate the discharge process in the water tank, and the temperature distribution during the discharge process was obtained. The computational fluid dynamics model was verified by the experimental data. Furthermore, the Ri, the fill efficiency, and the MIX number were adopted to extensively analyze the performance of a heat storage tank with different positions of PCMs with the variation of flow rates. The results indicated that the distance between the isothermal surfaces of 303.15 K and 348.15 K in PCM1, PCM2, PCM3, and PCM4 were 11.75 cm, 11.13 cm, 10.52 cm, and 9.28 cm, respectively, with 9 l/min of flow velocity when t* = 0.7, showing that the thermal stratification was improved as the position of the PCMs got closer to the inlet. The PCMs’ half-life (the liquefaction rate reached 50%) was prolonged as the inlet flow rates increased. As the flow rate increased from 1 l/min to 5 l/min, the half-life of PCM4 delayed from a dimensionless time of 0.5 to a dimensionless time of 0.9. Moreover, when the flow velocity was 9 L/min, the liquefaction rate of PCM4 remained at 1. The calculated values of fill efficiency and Richardson number were higher than the experimental data slightly, while the MIX number was smaller than the experimental results. The experimental and calculated values of root mean square error (RMSE) increased with the increasing inlet flow velocity and the lowering of the positions of the PCMs.

References

References
1.
Frazzica
,
A.
,
Manzan
,
M.
,
Sapienza
,
A.
,
Freni
,
A.
,
Toniato
,
G.
, and
Restuccia
,
G.
,
2016
, “
Experimental Testing of a Hybrid Sensible-Latent Heat Storage System for Domestic Hot Water Applications
,”
Appl. Energy
,
183
(
12
), pp.
1157
1167
. 10.1016/j.apenergy.2016.09.076
2.
Zhang
,
P.
,
Xiao
,
X.
, and
Ma
,
Z. W.
,
2016
, “
A Review of the Composite Phase Change Materials: Fabrication, Characterization, Mathematical Modeling and Application to Performance Enhancement
,”
Appl. Energy
,
165
(
3
), pp.
472
510
. 10.1016/j.apenergy.2015.12.043
3.
Wang
,
Z. L.
,
Zhang
,
H.
,
Dou
,
B. L.
,
Huang
,
H.
,
Wu
,
W.
, and
Wang
,
Z.
,
2017
, “
Experimental and Numerical Research of Thermal Stratification With a Novel Inlet in a Dynamic Hot Water Storage Tank
,”
Renewable Energy
,
111
(
10
), pp.
353
371
. 10.1016/j.renene.2017.04.007
4.
Song
,
M.
,
Xu
,
X.
,
Mao
,
N.
,
Deng
,
S.
, and
Xu
,
Y.
,
2017
, “
Energy Transfer Procession in an Air Source Heat Pump Unit During Defrosting
,”
Appl. Energy
,
204
(
10
), pp.
679
689
. 10.1016/j.apenergy.2017.07.063
5.
Pinel
,
P.
,
Cruickshank
,
C. A.
,
Beausoleil-Morrison
,
I.
, and
Wills
,
A.
,
2011
, “
A Review of Available Methods for Seasonal Storage of Solar Thermal Energy in Residential Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
7
), pp.
3341
3359
. 10.1016/j.rser.2011.04.013
6.
Gulfam
,
R.
,
Zhang
,
P.
, and
Meng
,
Z. N.
,
2019
, “
Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review
,”
Appl. Energy
,
238
(
3
), pp.
582
611
. 10.1016/j.apenergy.2019.01.114
7.
Zhou
,
Z. H.
,
Liu
,
J. W.
,
Wang
,
C. D.
,
Huang
,
X.
,
Gao
,
F.
,
Zhang
,
S.
, and
Yu
,
B.
,
2018
, “
Research on the Application of Phase-Change Heat Storage in Centralized Solar Hot Water System
,”
J. Cleaner Prod.
,
198
(
19
), pp.
1262
1275
. 10.1016/j.jclepro.2018.06.281
8.
Deng
,
J.
,
Furbo
,
S.
,
Kong
,
W.
, and
Fan
,
J.
,
2018
, “
Thermal Performance Assessment and Improvement of a Solar Domestic Hot Water Tank With PCM in the Mantle
,”
Energy Build.
,
172
(
4
), pp.
10
21
. 10.1016/j.enbuild.2018.04.058
9.
He
,
Z.
,
Wang
,
X.
,
Du
,
X.
,
Amjad
,
M.
,
Yang
,
L.
, and
Xu
,
C.
,
2019
, “
Experiments on Comparative Performance of Water Thermocline Storage Tank With and Without Encapsulated Paraffin Wax Packed Bed
,”
Appl. Therm. Eng.
,
147
(
1
), pp.
188
197
. 10.1016/j.applthermaleng.2018.10.051
10.
Nkwetta
,
D. N.
,
Vouillamoz
,
P. E.
, and
Haghighat
,
F.
,
2014
, “
Impact of Phase Change Materials Types and Positioning on Hot Water Tank Thermal Performance: Using Measured Water Demand Profile
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
460
468
. 10.1016/j.applthermaleng.2014.03.051
11.
Abdelsalam
,
M. Y.
,
Sarafraz
,
P.
,
Cotton
,
J. S.
, and
Lightstone
,
M. F.
,
2017
, “
Heat Transfer Characteristics of a Hybrid Thermal Energy Storage Tank With Phase Change Materials (PCMs) During Indirect Charging Using Isothermal Coil Heat Exchanger
,”
Sol. Energy
,
157
(
11
), pp.
462
476
. 10.1016/j.solener.2017.08.043
12.
Wang
,
Y.
,
Yu
,
K.
,
Peng
,
H.
, and
Ling
,
X.
,
2018
, “
Preparation and Thermal Properties of Sodium Acetate Trihydrate as a Novel Phase Change Material for Energy Storage
,”
Energy
,
167
(
1
), pp.
269
274
. 10.1016/j.energy.2018.10.164
13.
Shirinbakhsh
,
M.
,
Mirkhani
,
N.
, and
Sajadi
,
B.
,
2018
, “
A Comprehensive Study on the Effect of Hot Water Demand and PCM Integration on the Performance of SDHW System
,”
Sol. Energy
,
159
(
1
), pp.
405
414
. 10.1016/j.solener.2017.11.008
14.
López-Navarro
,
A.
,
Biosca-Taronger
,
J.
,
Corberán
,
J. M.
,
Peñalosa
,
C.
,
Lázaro
,
A.
,
Dolado
,
P.
, and
Payá
,
J.
,
2014
, “
Performance Characterization of a PCM Storage Tank
,”
Appl. Energy
,
119
(
4
), pp.
151
162
. 10.1016/j.apenergy.2013.12.041
15.
Kumar
,
G. S.
,
Nagarajan
,
D.
,
Chidambaram
,
L. A.
,
Kumaresan
,
V.
,
Ding
,
Y.
, and
Velraj
,
R.
,
2016
, “
Role of PCM Addition on Stratification Behaviour in a Thermal Storage Tank—An Experimental Study
,”
Energy
,
115
(
11
), pp.
1168
1178
. 10.1016/j.energy.2016.09.014
16.
Majumdar
,
R.
, and
Saha
,
S. K.
,
2019
, “
Effect of Varying Extent of PCM Capsule Filling on Thermal Stratification Performance of a Storage Tank
,”
Energy
,
178
(
7
), pp.
1
20
. 10.1016/j.energy.2019.04.101
17.
Mehling
,
H.
,
Cabeza
,
L. F.
,
Hippeli
,
S.
, and
Hiebler
,
S.
,
2003
, “
PCM-Module to Improve Hot Water Heat Stores With Stratification
,”
Renewable Energy
,
28
(
5
), pp.
699
711
. 10.1016/S0960-1481(02)00108-8
18.
Murali
,
G.
, and
Mayilsamy
,
K.
,
2016
, “
Effect of Latent Thermal Energy Storage and Inlet Locations on Enhancement of Stratification in a Solar Water Heater Under Discharging Mode
,”
Appl. Therm. Eng.
,
106
(
8
), pp.
354
360
. 10.1016/j.applthermaleng.2016.06.030
19.
Ramana
,
A. S.
,
Venkatesh
,
R.
,
Antony Aroul Raj
,
V.
, and
Velraj
,
R.
,
2014
, “
Experimental Investigation of the LHS System and Comparison of the Stratification Performance With the SHS System Using CFD Simulation
,”
Sol. Energy
,
103
(
5
), pp.
378
389
. 10.1016/j.solener.2014.02.009
20.
Dadollahi
,
M.
, and
Mehrpooya
,
M.
,
2017
, “
Modeling and Investigation of High Temperature Phase Change Materials (PCM) in Different Storage Tank Configurations
,”
J. Cleaner Prod.
,
161
(
17
), pp.
831
839
. 10.1016/j.jclepro.2017.05.171
21.
Allouche
,
Y.
,
Varga
,
S.
,
Bouden
,
C.
, and
Oliveira
,
A. C.
,
2016
, “
Validation of a CFD Model for the Simulation of Heat Transfer in a Tubes-in-Tank PCM Storage Unit
,”
Renewable Energy
,
89
(
4
), pp.
371
379
. 10.1016/j.renene.2015.12.038
22.
Teamah
,
H. M.
,
Lightstone
,
M. F.
, and
Cotton
,
J. S.
,
2017
, “
An Alternative Approach for Assessing the Benefit of Phase Change Materials in Solar Domestic Hot Water Systems
,”
Sol. Energy
,
158
(
12
), pp.
875
888
. 10.1016/j.solener.2017.10.033
23.
Ahmed
,
N.
,
Elfeky
,
K. E.
,
Qaisrani
,
M. A.
, and
Wang
,
Q. W.
,
2019
, “
Numerical Characterization of Thermocline Behaviour of Combined Sensible-Latent Heat Storage Tank Using Brick Manganese Rod Structure Impregnated With PCM Capsules
,”
Sol. Energy
,
180
(
3
), pp.
243
256
. 10.1016/j.solener.2019.01.001
24.
Essa
,
M. A.
,
Mostafa
,
N. H.
, and
Ibrahim
,
M. M.
,
2018
, “
An Experimental Investigation of the Phase Change Process Effects on the System Performance for the Evacuated Tube Solar Collectors Integrated With PCMs
,”
Energy Convers. Manage.
,
177
(
23
), pp.
1
10
. 10.1016/j.enconman.2018.09.045
25.
Saffari
,
M.
,
de Gracia
,
A.
,
Fernández
,
C.
, and
Cabeza
,
L. F.
,
2017
, “
Simulation-Based Optimization of PCM Melting Temperature to Improve the Energy Performance in Buildings
,”
Appl. Energy
,
202
(
9
), pp.
420
434
. 10.1016/j.apenergy.2017.05.107
26.
Huang
,
H. J.
,
Wang
,
Z. L.
,
Zhang
,
H.
,
Dou
,
B.
,
Huang
,
S.
,
Liang
,
H.
, and
Goula
,
M. A.
,
2019
, “
An Experimental Investigation on Thermal Stratification Characteristics With PCMs in Solar Water Tank
,”
Sol. Energy
,
177
(
1
), pp.
8
12
. 10.1016/j.solener.2018.11.004
27.
Kell
,
G. S.
,
1975
, “
Density, Thermal Expansivity, and Compressibility of Liquid Water From 0.deg. to 150.deg. Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale
,”
J. Chem. Eng. Data
,
20
(
1
), pp.
97
105
. 10.1021/je60064a005
28.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
Higher Education Press
,
Beijing
, pp.
563
564
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1975
, “
The Description of Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
9
.
You do not currently have access to this content.