Abstract

To make a better thermal storage system that uses air as the heat transfer fluid flowing through a packed-bed of ceramic spheres (Al2O3) as thermal storage materials, the present work studied cases using multiple small-diameter thin tanks to replace a large-diameter big tank while keeping the same total volume and the same air flow rate. Performance analysis of thermal storage has been conducted for comparison and optimization. The long flow passage and faster flow velocity of air in the small-diameter tanks was found to significantly benefit thermal storage performance compared with that of a short big tank. It resulted in a longer duration of discharge of high-temperature airflow, if the same operation time is applied to the two situations. The faster airflow enhances the heat transfer between air and thermal storage material, although it incurs larger pressure loss. Overall, the energy storage efficiency of using several thin tanks can be significantly better than that of using a big short tank if the height-to-diameter ratio in the multiple thin tanks is properly optimized. The optimization methodology and results are of great significance to the development of thermal storage systems that use air as heat transfer fluid and rocks or ceramic spheres as the packed-bed material for thermal storage.

References

References
1.
Müller-Steinhagen
,
H.
, and
Trieb
,
F.
,
2014
, “
Concentrating Solar Power—A Review of the Technology
,”
Ingenia – Quarterly of the Royal Academy of Engineering
(online),
18
, pp.
43
50
.
2.
Árpád
,
I.
,
2010
, “
Investigation of Sensible Heat Storage and Heat Insulation in the Exploitation of Concentrated Solar Energy
,”
Hung. J. Ind. Chem.
,
39
(
2
), pp.
163
167
.
3.
Dunn
,
R. I.
,
Hearps
,
P. J.
, and
Wright
,
M. N.
,
2012
, “
Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage
,”
Proc. IEEE
,
100
(
2
), pp.
504
515
. 10.1109/JPROC.2011.2163739
4.
US Department of Energy
, “
Sunshot Vision Study
,” https://www.energy.gov/eere/solar/sunshot-vision-study. Accessed February 2012.
5.
Vignarooban
,
K.
,
Xu
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems—A Review
,”
Appl. Energy
,
146
, pp.
383
396
. 10.1016/j.apenergy.2015.01.125
6.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
. 10.1016/j.solener.2005.04.020
7.
Wang
,
Y.
,
Bai
,
F. W.
,
Wang
,
Z. F.
,
Kiriki
,
H.
,
Han
,
M. X.
, and
Kubo
,
S.
,
2015
, “
Experimental Research of the Heat Transfer Characteristics Using a Packed-Bed of Honeycomb Ceramic for High Temperature Thermal Storage System
,”
Energy Procedia
,
69
, pp.
1059
1067
. 10.1016/j.egypro.2015.03.209
8.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Zavattoni
,
S.
,
Barbato
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Packed-Bed Thermal Storage for Concentrated Solar Power—Pilot-Scale Demonstration and Industrial-Scale Design
,”
Sol. Energy
,
86
, pp.
3084
3098
. 10.1016/j.solener.2012.07.019
9.
Meier
,
A.
,
Winkler
,
C.
, and
Wuillemin
,
D.
,
1991
, “
Experiment for Modelling High Temperature Rock Bed Storage
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
255
264
. 10.1016/0165-1633(91)90066-T
10.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
. 10.1016/j.applthermaleng.2010.10.034
11.
Klein
,
P.
,
2016
, “
High Temperature Packed Bed Thermal Storage for Solar Gas Turbines
,” Thesis,
The Faculty of Engineering and the Built Environment, University of the Witwatersrand
,
Johannesburg
.
12.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
. 10.1016/j.rser.2009.07.035
13.
Coutier
,
J. P.
, and
Farber
,
E. A.
,
1982
, “
Two Applications of a Numerical Approach of Heat Transfer Process Within Rock Beds
,”
Sol. Energy
,
29
(
6
), pp.
451
462
. 10.1016/0038-092X(82)90053-6
14.
Cascetta
,
M.
,
Cau
,
G.
,
Puddu
,
P.
, and
Serra
,
F.
,
2016
, “
A Comparison Between CFD Simulation and Experimental Investigation of a Packed-Bed Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
98
, pp.
1263
1272
. 10.1016/j.applthermaleng.2016.01.019
15.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Zavattoni
,
S. A.
,
Barbato
,
M. C.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2014
, “
Design of a 100 MWhth Packed-Bed Thermal Energy Storage
,”
Energy Procedia
,
49
, pp.
1071
1077
. 10.1016/j.egypro.2014.03.116
16.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Design of Packed Bed Thermal Energy Storage Systems for High-Temperature Industrial Process Heat
,”
Appl. Energy
,
137
, pp.
812
822
. 10.1016/j.apenergy.2014.07.110
17.
Zavattoni
,
S. A.
,
Barbato
,
M. C.
,
Pedretti
,
A.
, and
Zanganeh
,
G.
,
2015
, “
Single-Tank TES System—Transient Evaluation of Thermal Stratification According to the Second-Law of Thermodynamics
,”
Energy Procedia
,
69
, pp.
1068
1077
. 10.1016/j.egypro.2015.03.213
18.
Zavattoni
,
S. A.
,
Barbato
,
M. C.
,
Pedretti
,
A.
,
Zanganeh
,
G.
, and
Steinfeld
,
A.
,
2014
, “
High Temperature Rock-Bed TES System Suitable for Industrial-Scale CSP Plant—CFD Analysis Under Charge/Discharge Cyclic Conditions
,”
Energy Procedia
,
46
, pp.
124
133
. 10.1016/j.egypro.2014.01.165
19.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
. 10.1115/1.1464123
20.
Borbely
,
T.
,
2012
, “
Optimal Design of High-Temperature Thermal Energy Store Filled With Ceramic Balls
,”
Hung. J. Ind. Chem.
,
40
(
2
), pp.
93
99
.
21.
Bruch
,
A.
,
Fourmigue
,
J. F.
,
Couturier
,
R.
, and
Molina
,
S.
,
2014
, “
Experimental and Numerical Investigation of Stability of Packed Bed Thermal Energy Storage for CSP Power Plant
,”
Energy Procedia
,
49
, pp.
743
751
. 10.1016/j.egypro.2014.03.080
22.
Bruch
,
A.
,
Molina
,
S.
,
Esence
,
T.
,
Fourmigué
,
J. F.
, and
Couturier
,
R.
,
2017
, “
Experimental Investigation of Cycling Behavior of Pilot-Scale Thermal Oil Packed-Bed Thermal Storage System
,”
Renewable Energy
,
103
, pp.
277
285
. 10.1016/j.renene.2016.11.029
23.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Introduction to Heat Transfer
,
5th ed.
,
Johns Willey & Son, Wiley
,
Hoboken, NJ
.
24.
Bei Yang
,
Y. W.
,
Bai
,
F.
, and
Wang
,
Z.
,
2016
, “
Experimental and Numerical Investigation of a Packed-Bed Thermal Energy Storage Device
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Abu Dhabi, United Arab Emirates
,
Oct. 11–14
.
25.
Stephan
,
P.
,
Kabelac
,
S.
,
Kind
,
M.
,
Mewes
,
D.
,
Schaber
,
K.
, and
Wetzel
,
T.
,
2006
,
Vdi-Wärmeatlas
,
Springer Vieweg Verlag
,
Berlin
.
26.
Van Lew
,
J. T.
,
Li
,
P.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021003
. 10.1115/1.4003685
27.
Chandra
,
P.
, and
Willits
,
D. H.
,
1981
, “
Pressure Drop and Heat Transfer Characteristics of air-Rock Bed Thermal Storage Systems
,”
Sol. Energy
,
27
(
6
), pp.
547
553
. 10.1016/0038-092X(81)90050-5
You do not currently have access to this content.