Abstract

An integrated desalination system with a combination of electrical heating by power supply and solar heating by Fresnel lens with the sun tracking system was investigated in this study. The experiments were carried out under the climatic conditions of Kaohsiung City (22 deg36′58″ N, 120 deg18′47″ E), Taiwan. With only solar heating by the Fresnel lens, the temperature of the seawater is strongly dependent on the position of the seawater tray and climatic conditions, and seawater evaporation is not stable. To maintain the uniform evaporation of seawater, an electrical heating plate was also used to provide energy for the desalination process. The results indicate that there are two desalination processes: evaporation on the surface of the seawater and boiling inside the seawater. The production of distilled water is greatly improved with this solar/electrical desalination system, especially at the boiling temperature. The results indicate that the energy efficiency and recovery efficiency of this desalination system increase rapidly as electrical power increases. In this study, the commercial energy efficiency of the system can reach 85%, and the recovery efficiency can approach 56.52%. Additionally, a higher annual productivity (6036 l) is obtained, and the cost per liter of distilled water is about 0.152 (US$/l).

References

References
1.
WWAP (United Nations World Water Assessment Programme)/UN-Water
,
2018
,
The United Nations World Water Development Report 2018: Nature-Based Solutions for Water
,
UNESCO
,
Paris
.
2.
Eltawil
,
M. A.
,
Zhengming
,
Z.
, and
Yuan
,
L.
,
2009
, “
A Review of Renewable Technologies Integrated With Desalination Systems
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2245
2262
. 10.1016/j.rser.2009.06.011
3.
Semiat
,
R.
,
2008
, “
Energy Issues in Desalination Processes
,”
Environ. Sci. Technol.
,
42
(
22
), pp.
8193
8201
. 10.1021/es801330u
4.
Ayoub
,
G. M.
, and
Malaeb
,
L.
,
2014
, “
Economic Feasibility of a Solar Still Desalination System With Enhanced Productivity
,”
Desalination
,
335
(
1
), pp.
27
32
. 10.1016/j.desal.2013.12.010
5.
Kabeel
,
A. E.
,
Hamed
,
A. M.
, and
El-Agouz
,
S. A.
,
2010
, “
Cost Analysis of Different Solar Still Configurations
,”
Energy
,
35
(
7
), pp.
2901
2908
. 10.1016/j.energy.2010.03.021
6.
Qiblawey
,
H. M.
, and
Banat
,
F.
,
2008
, “
Solar Thermal Desalination Technologies
,”
Desalination
,
220
(
1–3
), pp.
633
644
. 10.1016/j.desal.2007.01.059
7.
Samee
,
M. A.
,
Mirza
,
U. K.
,
Majeed
,
T.
, and
Ahmad
,
N.
,
2007
, “
Design and Performance of a Simple Single Basin Solar Still
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
543
549
. 10.1016/j.rser.2005.03.003
8.
Velmurugan
,
V.
,
Gopalakrishnan
,
M.
,
Raghu
,
R.
, and
Srithar
,
K.
,
2008
, “
Single Basin Solar Still With Fin for Enhancing Productivity
,”
Energy Convers. Manage.
,
49
(
10
), pp.
2602
2608
. 10.1016/j.enconman.2008.05.010
9.
Omara
,
Z. M.
,
Kabeel
,
A. E.
, and
Younes
,
M. M.
,
2013
, “
Enhancing the Stepped Solar Still Performance Using Internal Reflectors
,”
Desalination
,
314
(
2
), pp.
67
72
. 10.1016/j.desal.2013.01.007
10.
Omara
,
Z. M.
,
Kabeel
,
A. E.
, and
Younes
,
M. M.
,
2014
, “
Enhancing the Stepped Solar Still Performance Using Internal and External Reflectors
,”
Energy Convers. Manage.
,
78
, pp.
876
881
. 10.1016/j.enconman.2013.07.092
11.
Radhwan
,
A. M.
,
2004
, “
Transient Performance of a Stepped Solar Still With Built-in Latent Heat Thermal Energy Storage
,”
Desalination
,
171
(
1
), pp.
61
76
. 10.1016/j.desa1.2003.12.010
12.
Arunkumar
,
T.
,
Denkenberger
,
D.
,
Ahsan
,
A.
, and
Jayaprakash
,
R.
,
2013
, “
The Augmentation of Distillate Yield by Using Concentrator Coupled Solar Still With Phase Change Material
,”
Desalination
,
314
(
2
), pp.
189
192
. 10.1016/j.desal.2013.01.018
13.
Srithar
,
K.
,
Rajaseenivasan
,
T.
,
Karthik
,
N.
,
Periyannan
,
M.
, and
Gowtham
,
M.
,
2016
, “
Stand Alone Triple Basin Solar Desalination System With Cover Cooling and Parabolic Dish Concentrator
,”
Renewable Energy
,
90
, pp.
157
165
. 10.1016/j.renene.2015.12.063
14.
Gude
,
V. G.
, and
Nirmalakhandan
,
N.
,
2008
, “
Combined Desalination and Solar-Assisted Air-Conditioning System
,”
Energy Convers Manag.
,
49
(
11
), pp.
3326
3330
. 10.1016/j.enconman.2008.03.030
15.
Nada
,
S. A.
,
Elattar
,
H. F.
, and
Fouda
,
A.
,
2015
, “
Experimental Study for Hybrid Humidification- Dehumidification Water Desalination and Air Conditioning System
,”
Desalination
,
363
(
1
), pp.
112
125
. 10.1016/j.desal.2015.01.032
16.
Abdallah
,
S.
, and
Badran
,
O. O.
,
2008
, “
Sun Tracking System for Productivity Enhancement of Solar Still
,”
Desalination
,
220
(
1
), pp.
669
676
. 10.1016/j.desal.2007.02.047
17.
Omara
,
Z. M.
, and
Eltawil
,
M. A.
,
2013
, “
Hybrid of Solar Dish Concentrator, New Boiler and Simple Solar Collector for Brackish Water Desalination
,”
Desalination
,
326
(
1
), pp.
62
68
. 10.1016/j.desal.2013.07.019
18.
Elashmawy
,
M.
,
2017
, “
An Experimental Investigation of a Parabolic Concentrator Solar Tracking System Integrated With a Tubular Solar Still
,”
Desalination
,
411
(
1
), pp.
1
8
. 10.1016/j.desal.2017.02.003
19.
Hawlader
,
M. N. A.
,
Dey
,
P. K.
,
Diab
,
S.
, and
Chung
,
C. Y.
,
2004
, “
Solar Assisted Heat Pump Desalination System
,”
Desalination
,
168
(
15
), pp.
49
54
. 10.1016/j.desal.2004.06.168
20.
Joseph
,
J.
,
Saravanan
,
R.
, and
Renganarayanan
,
S.
,
2005
, “
Studies on a Single-Stage Solar Desalination System for Domestic Applications
,”
Desalination
,
173
(
1
), pp.
77
82
. 10.1016/j.desal.2004.06.210
21.
Reddy
,
K. S.
,
Kumar
,
K. R.
,
O’Donovan
,
T. S.
, and
Mallick
,
T. K.
,
2012
, “
Performance Analysis of an Evacuated Multi-Stage Solar Water Desalination System
,”
Desalination
,
288
(
1
), pp.
80
92
. 10.1016/j.desal.2011.12.016
22.
El-Agouz
,
S. A.
,
El-Aziz
,
G. A.
, and
Awad
,
A. M.
,
2014
, “
Solar Desalination System Using Spray Evaporation
,”
Energy
,
76
(
1
), pp.
276
283
. 10.1016/j.energy.2014.08.009
23.
Xuening
,
F.
,
Lei
,
C.
,
Yuman
,
D.
,
Min
,
J.
, and
Jinping
,
F.
,
2015
, “
CFD Modeling and Analysis of Brine Spray Evaporation System Integrated With Solar Collector
,”
Desalination
,
366
(
15
), pp.
139
145
. 10.1016/j.desal.2015.02.027
24.
Chen
,
Q.
,
Ja
,
M. K.
,
Li
,
Y.
, and
Chua
,
K. J.
,
2018
, “
Evaluation of a Solar-Powered Spray-Assisted Low-Temperature Desalination Technology
,”
Appl. Energy
,
211
(
1
), pp.
997
1008
. 10.1016/j.apenergy.2017.11.103
25.
Cheng
,
T. C.
,
Hung
,
W. C.
, and
Fang
,
T. H.
,
2013
, “
Two-Axis Solar Heat Collection Tracker System for Solar Thermal Applications
,”
Int. J. Photoenergy
,
2013
. 10.1155/2013/803457
26.
Delyannis
,
E. E.
, and
Delyannis
,
A.
,
2016
, “
Economic Feasibility Evaluation of Solar Distillation Systems Based on the Equivalent Cost of Environmental Degradation and High-Grade Energy Savings
,”
Int. J. Low-Carbon Technol.
,
11
(
1
), pp.
8
15
. 10.1093/ijlct/ctt048
27.
Hassanzadeh
,
A.
,
Jiang
,
L.
, and
Winston
,
R.
,
2018
, “
Coupled Optical-Thermal Modeling, Design and Experimental Testing of a Novel Medium-Temperature Solar Thermal Collector With Pentagon Absorber
,”
Sol. Energy
,
173
, pp.
1248
1261
. 10.1016/j.solener.2018.08.022
28.
Nafey
,
A. S.
,
Abdelkader
,
M.
,
Abdelmotalip
,
A.
, and
Mabrouk
,
A. A.
,
2000
, “
Parameters Affecting Solar Still Productivity
,”
Energy Convers. Manag.
,
41
(
16
), pp.
1797
1809
. 10.1016/S0196-8904(99)00188-0
29.
Muftah
,
A. F.
,
Alghoul
,
M. A.
,
Fudholi
,
A.
,
Abdul-Majeed
,
M. M.
, and
Sopian
,
K.
,
2014
, “
Factors Affecting Basin Type Solar Still Productivity: A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
430
447
. 10.1016/j.rser.2013.12.052
30.
Peter
,
W.
,
Tom
,
P.
,
Randeep
,
S.
, and
Aliakbar
,
A.
,
2011
, “
Novel and Low Cost Designs of Portable Solar Stills
,”
Desalination
,
276
(
1–3
), pp.
294
302
. 10.1016/j.desal.2011.03.069
31.
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2012
, “
Experimental Study of a Novel Portable Solar Still by Utilizing the Heat Pipe and Thermoelectric Module
,”
Desalination
,
284
(
4
), pp.
55
61
. 10.1016/j.desal.2011.08.036
32.
Esfahani
,
J. A.
,
Rahbar
,
N.
, and
Lavvaf
,
M.
,
2011
, “
Utilization of Thermoelectric Cooling in a Portable Active Solar Still—an Experimental Study on Winter Days
,”
Desalination
,
269
(
1–3
), pp.
198
205
. 10.1016/j.desal.2010.10.062
33.
El-Sebaii
,
A. A.
,
Ramadan
,
M. R. I.
,
Aboul-Enein
,
S.
, and
Salem
,
N.
,
2008
, “
Thermal Performance of a Single-Basin Solar Still Integrated With a Shallow Solar Pond
,”
Energy Convers. Manage.
,
49
(
10
), pp.
2839
2848
. 10.1016/j.enconman.2008.03.002
34.
Badran
,
O. O.
, and
Al-Tahaineh
,
H. A.
,
2005
, “
The Effect of Coupling a Flat-Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(
1–3
), pp.
137
142
. 10.1016/j.desal.2005.02.046
35.
Abdallah
,
S.
,
Badran
,
O.
, and
Abu-Khader
,
M. M.
,
2008
, “
Performance Evaluation of a Modified Design of a Single Slope Solar Still
,”
Desalination
,
219
(
1–3
), pp.
222
230
. 10.1016/j.desal.2007.05.015
You do not currently have access to this content.