Abstract

This study numerically investigates the thermal behavior and airflow characteristics of the building-integrated photovoltaic (BIPV) façade. A three-dimensional model is developed based on the typical BIPV façade. Computational fluid dynamics (CFD) with the shear stress transport (SST) κ-omega turbulent model is used in the study. The effects of geometric configurations on the BIPV cell temperature in steady state are evaluated including the sizes of the bottom and top openings and the depth of the back air cavity (or so-called cavity depth). When the sizes of the inlet and outlet openings are the same, the effects on the decrease of cell temperature are limited. By enlarging the bottom (inlet) opening, the impact of ventilation in the cavity behind is more significant and the cell temperature decreases. Cavity depth is also a vital factor affecting BIPV cell temperature. The paper identifies the optimal cavity depth of approximately 100–125 mm. Flow disturbance and a vortex may be observed at the bottom and top of the air cavity, respectively, as the cavity depth increases which negatively affects the ventilation causing these flow disturbances to increase the cell temperature. Thermal effects of environmental conditions are compared with regard to two selected BIPV configurations. The wind velocity and the attack angle also have an obvious impact on cell temperature. Ambient temperature and solar irradiance exhibit a linear relationship with BIPV cell temperature as expected.

References

References
1.
Razykov
,
T. M.
,
Ferekides
,
C. S.
,
Morel
,
D.
,
Stefanakos
,
E.
,
Ullal
,
H. S.
, and
Upadhyaya
,
H. M.
,
2011
, “
Solar Photovoltaic Electricity: Current Status and Future Prospects
,”
Sol. Energy
,
85
(
8
), pp.
1580
1608
. 10.1016/j.solener.2010.12.002
2.
Shanmugavalli
,
K. R.
, and
Vedamuthu
,
R.
,
2015
, “
Viability of Solar Rooftop Photovoltaic Systems in Grouphousing Schemes
,”
Curr. Sci.
,
108
(
6
), pp.
1080
1085
.
3.
Singh
,
R.
, and
Banerjee
,
R.
,
2015
, “
Estimation of Rooftop Solar Photovoltaic Potential of a City
,”
Sol. Energy
,
115
, pp.
589
602
. 10.1016/j.solener.2015.03.016
4.
Luther
,
J.
,
Reindl
,
T.
,
Wang
,
D.
,
Aberle
,
A.
,
Walsh
,
W.
,
Nobre
,
A.
, and
Yao
,
G.
,
2013
,
Solar Photovoltaic (PV) Roadmap for Singapore (A Summary)
,
Solar Energy Research Institute of Singapore (SERIS)
,
Singapore
. https://www.nccs.gov.sg/docs/default-source/default-document-library/solar-photovoltaic-roadmap-for-singapore-a-summary.pdf
5.
Radziemska
,
E.
,
2003
, “
The Effect of Temperature on the Power Drops in Crystalline Silicon Solar Cells
,”
Renew. Energy
,
28
(
1
), pp.
1
12
. 10.1016/S0960-1481(02)00015-0
6.
Candanedo
,
L. M.
,
Athienitis
,
A.
, and
Park
,
K.-W.
,
2011
, “
Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021002
. 10.1115/1.4003145
7.
Zondag
,
H. A.
,
2008
, “
Flat-Plate PV-Thermal Collectors and Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
12
(
4
), pp.
891
959
. 10.1016/j.rser.2005.12.012
8.
Park
,
K. E.
,
Kang
,
G. H.
,
Kim
,
H. I.
,
Yu
,
G. J.
, and
Kim
,
J. T.
,
2010
, “
Analysis of Thermal and Electrical Performance of Semi-Transparent Photovoltaic (PV) Module
,”
Energy
,
35
(
6
), pp.
2681
2687
. 10.1016/j.energy.2009.07.019
9.
Agrawal
,
B.
, and
Tiwari
,
G. N.
,
2011
, “
An Energy and Exergy Analysis of Building Integrated Photovoltaic Thermal Systems
,”
Energy Sources Part A
,
33
(
7
), pp.
649
664
. 10.1080/15567030903226280
10.
Abdul Hamid
,
S.
,
Yusof Othman
,
M.
,
Sopian
,
K.
, and
and Zaidi
,
S. H.
,
2014
, “
An Overview of Photovoltaic Thermal Combination (PV/T Combi) Technology
,”
Renew. Sustain. Energy Rev.
,
38
, pp.
212
222
. 10.1016/j.rser.2014.05.083
11.
Li
,
W.
,
Paul
,
M. C.
,
Rolley
,
M.
,
Sweet
,
T.
,
Gao
,
M.
,
Baig
,
H.
,
Fernandez
,
E. F.
,
Mallick
,
T. K.
,
Montecucco
,
A.
,
Siviter
,
J.
,
Knox
,
A. R.
,
Han
,
G.
,
Gregory
,
D. H.
,
Azough
,
F.
, and
Freer
,
R.
,
2017
, “
A Coupled Optical-Thermal-Electrical Model to Predict the Performance of Hybrid PV/T-CCPC Roof-Top Systems
,”
Renew. Energy
,
112
, pp.
166
186
. 10.1016/j.renene.2017.05.012
12.
Noro
,
M.
,
Lazzarin
,
R.
, and
Bagarella
,
G.
,
2016
, “
Advancements in Hybrid Photovoltaic-Thermal Systems: Performance Evaluations and Applications
,”
Energy Procedia
,
101
, pp.
496
503
. 10.1016/j.egypro.2016.11.063
13.
Sathe
,
T. M.
, and
Dhoble
,
A. S.
,
2017
, “
A Review on Recent Advancements in Photovoltaic Thermal Techniques
,”
Renew. Sustain. Energy Rev.
,
76
, pp.
645
672
. 10.1016/j.rser.2017.03.075
14.
Slimani
,
M. E. A.
,
Amirat
,
M.
,
Kurucz
,
I.
,
Bahria
,
S.
,
Hamidat
,
A.
, and
Chaouch
,
W. B.
,
2017
, “
A Detailed Thermal-Electrical Model of Three Photovoltaic/Thermal (PV/T) Hybrid Air Collectors and Photovoltaic (PV) Module: Comparative Study Under Algiers Climatic Conditions
,”
Energy Convers. Manage.
,
133
, pp.
458
476
. 10.1016/j.enconman.2016.10.066
15.
Adeli
,
M. M.
,
Sobhnamayan
,
F.
,
Farahat
,
S.
,
Alavi
,
M. A.
, and
Sarhaddi
,
F.
,
2012
, “
Experimental Performance Evaluation of a Photovoltaic Thermal (PV/T) Air Collector and Its Optimization
,”
Strojniški vestnik—J. Mech. Eng.
,
58
(
5
), pp.
309
318
. 10.5545/sv-jme.2010.007
16.
Corbin
,
C. D.
, and
Zhai
,
Z. J.
,
2010
, “
Experimental and Numerical Investigation on Thermal and Electrical Performance of a Building Integrated Photovoltaic–Thermal Collector System
,”
Energy Build.
,
42
(
1
), pp.
76
82
. 10.1016/j.enbuild.2009.07.013
17.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
A Three-Dimensional Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a Photovoltaic Thermal System With Pancake Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031009
. 10.1115/1.4035818
18.
Bahaidarah
,
H. M. S.
,
Baloch
,
A. A. B.
, and
Gandhidasan
,
P.
,
2016
, “
Uniform Cooling of Photovoltaic Panels: A Review
,”
Renew. Sustain. Energy Rev.
,
57
, pp.
1520
1544
. 10.1016/j.rser.2015.12.064
19.
Lau
,
G. E.
,
Sanvicente
,
E.
,
Yeoh
,
G. H.
,
Timchenko
,
V.
,
Fossa
,
M.
,
Ménézo
,
C.
, and
Giroux-Julien
,
S.
,
2012
, “
Modelling of Natural Convection in Vertical and Tilted Photovoltaic Applications
,”
Energy Build.
,
55
, pp.
810
822
. 10.1016/j.enbuild.2012.10.014
20.
Yang
,
T.
, and
Athienitis
,
A. K.
,
2015
, “
Experimental Investigation of a Two-Inlet Air-Based Building Integrated Photovoltaic/Thermal (BIPV/T) System
,”
Appl. Energy
,
159
, pp.
70
79
. 10.1016/j.apenergy.2015.08.048
21.
Gan
,
G.
,
2009
, “
Numerical Determination of Adequate Air Gaps for Building-Integrated Photovoltaics
,”
Sol. Energy
,
83
(
8
), pp.
1253
1273
. 10.1016/j.solener.2009.02.008
22.
Chandrasekar
,
M.
,
Rajkumar
,
S.
, and
Valavan
,
D.
,
2015
, “
A Review on the Thermal Regulation Techniques for Non Integrated Flat PV Modules Mounted on Building top
,”
Energy Build.
,
86
, pp.
692
697
. 10.1016/j.enbuild.2014.10.071
23.
Zogou
,
O.
, and
Stapountzis
,
H.
,
2012
, “
Flow and Heat Transfer Inside a PV/T Collector for Building Application
,”
Appl. Energy
,
91
(
1
), pp.
103
115
. 10.1016/j.apenergy.2011.09.019
24.
Ameri
,
M.
,
Mahmoudabadi
,
M. M.
, and
Shahsavar
,
A.
,
2012
, “
An Experimental Study on a Photovoltaic/Thermal (PV/T) Air Collector With Direct Coupling of Fans and Panels
,”
Energy Sources Part A
,
34
(
10
), pp.
929
947
. 10.1080/15567031003735238
25.
Shahsavar
,
A.
,
Ameri
,
M.
, and
Gholampour
,
M.
,
2012
, “
Energy and Exergy Analysis of a Photovoltaic-Thermal Collector With Natural Air Flow
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011014
. 10.1115/1.4005250
26.
Han
,
J.
,
Lu
,
L.
,
Peng
,
J.
, and
Yang
,
H.
,
2013
, “
Performance of Ventilated Double-Sided PV Façade Compared With Conventional Clear Glass Façade
,”
Energy Build.
,
56
, pp.
204
209
. 10.1016/j.enbuild.2012.08.017
27.
Han
,
J.
,
Lu
,
L.
, and
Yang
,
H.
,
2010
, “
Numerical Evaluation of the Mixed Convective Heat Transfer in a Double-Pane Window Integrated With See-Through a-Si PV Cells With Low-e Coatings
,”
Appl. Energy
,
87
(
11
), pp.
3431
3437
. 10.1016/j.apenergy.2010.05.025
28.
Shan
,
F.
,
Tang
,
F.
,
Cao
,
L.
, and
Fang
,
G.
,
2014
, “
Comparative Simulation Analyses on Dynamic Performances of Photovoltaic–Thermal Solar Collectors With Different Configurations
,”
Energy Convers. Manage.
,
87
, pp.
778
786
. 10.1016/j.enconman.2014.07.077
29.
Amori
,
K. E.
, and
Taqi Al-Najjar
,
H. M.
,
2012
, “
Analysis of Thermal and Electrical Performance of a Hybrid (PV/T) Air Based Solar Collector for Iraq
,”
Appl. Energy
,
98
, pp.
384
395
. 10.1016/j.apenergy.2012.03.061
30.
Brandl
,
D.
,
Mach
,
T.
,
Grobbauer
,
M.
, and
Hochenauer
,
C.
,
2014
, “
Analysis of Ventilation Effects and the Thermal Behaviour of Multifunctional Façade Elements With 3D CFD Models
,”
Energy Build.
,
85
, pp.
305
320
. 10.1016/j.enbuild.2014.09.036
31.
Gan
,
G.
,
2009
, “
Effect of Air Gap on the Performance of Building-Integrated Photovoltaics
,”
Energy
,
34
(
7
), pp.
913
921
. 10.1016/j.energy.2009.04.003
32.
Nižetić
,
S.
,
Grubišić-Čabo
,
F.
,
Marinić-Kragić
,
I.
, and
Papadopoulos
,
A. M.
,
2016
, “
Experimental and Numerical Investigation of a Backside Convective Cooling Mechanism on Photovoltaic Panels
,”
Energy
,
111
, pp.
211
225
. 10.1016/j.energy.2016.05.103
33.
SUNMetrix
,
2017
, “
Sunmetrix Solar Panel Size for Residential, Commercial and Portable Applications
,” http://sunmetrix.com/solar-panel-size-for-residential-commercial-and-portable-applications/, Accessed August 25, 2019.
34.
Wohlgemuth
,
J. H.
,
2012
, “
Standards for PV Modules and Components—Recent Developments and Challenges (No. NREL/CP-5200-56531)
,”
27th European Photovoltaic Solar Energy Conference and Exhibition, U.S. Department of Commerce National Technical Information Service
, National Renewable Energy Lab (NREL), Golden, CO.https://www.nrel.gov/docs/fy13osti/56531.pdf
35.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2014
,
Fluid Mechanics Fundamentals and Applications
,
McGraw-Hill
,
New York
.
36.
Chen
,
H. C.
,
Patel
,
V. C.
, and
Ju
,
S.
,
1990
, “
Solutions of Reynolds-Averaged Navier-Stokes Equations for Three-Dimensional Incompressible Flows
,”
J. Comput. Phys.
,
88
(
2
), pp.
305
336
. 10.1016/0021-9991(90)90182-Z
37.
Von Karman
,
T.
,
1931
, “
Mechanical Similitude and Turbulence
,” NACA Technical Memorandum 611. No. NACA-TM-611,
National Advisory Committee for Aeronautics
,
Washington, DC
.
38.
ANSYS
,
2017
,
18.1 ANSYS Fluent Theory Guide
,
ANSYS
.
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
40.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
NASA Ames Research Center
,
Orlando, FL
, p.
2906
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930013620.pdf.
41.
Brinkworth
,
B. J.
,
Cross
,
B. M.
,
Marshall
,
R. H.
, and
Yang
,
H.
,
1997
, “
Thermal Regulation of Photovoltaic Cladding
,”
Sol. Energy
,
61
(
3
), pp.
169
178
. 10.1016/S0038-092X(97)00044-3
42.
Raval
,
H. D.
,
Maiti
,
S.
, and
Mittal
,
A.
,
2014
, “
Computational Fluid Dynamics Analysis and Experimental Validation of Improvement in Overall Energy Efficiency of a Solar Photovoltaic Panel by Thermal Energy Recovery
,”
J. Renew. Sustain. Energy
,
6
(
3
). 10.1063/1.4885178
43.
Xamán
,
J.
,
Álvarez
,
G.
,
Lira
,
L.
, and
Estrada
,
C.
,
2005
, “
Numerical Study of Heat Transfer by Laminar and Turbulent Natural Convection in Tall Cavities of Façade Elements
,”
Energy Build.
,
37
(
7
), pp.
787
794
. 10.1016/j.enbuild.2004.11.001
44.
Kanargi
,
O. B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2017
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of a Cross-Connected Alternating Converging–Diverging Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
106
, pp.
449
464
. 10.1016/j.ijheatmasstransfer.2016.08.057
45.
Yuan
,
C.
, and
Ng
,
E.
,
2012
, “
Building Porosity for Better Urban Ventilation in High-Density Cities—A Computational Parametric Study
,”
Build. Environ.
,
50
, pp.
176
189
. 10.1016/j.buildenv.2011.10.023
46.
ANSYS Fluent
,
2017
,
Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
47.
Meteorological Service Singapore
,
2010
, “
Climate of Singapore
,” http://www.weather.gov.sg/climate-climate-of-singapore/, Accessed August 25, 2019.
48.
Rehman
,
N. u.
, and
Siddiqui
,
M. A.
,
2015
, “
A Novel Method for Determining Sky View Factor for Isotropic Diffuse Radiations for a Collector in Obstacles-Free or Urban Sites
,”
J. Renew. Sustain. Energy
,
7
(
3
), p.
033110
. 10.1063/1.4921386
49.
NSR
,
2018
, “
National Solar Repository of Singapore (NSR)
,” http://www.solar-repository.sg/local-weather, Accessed August 25, 2019.
You do not currently have access to this content.