Abstract

Due to the increasing demand for air conditioners to maintain thermal comfort in buildings, it is necessary to search for alternatives that can reduce the soaring temperature and meet total air conditioning demands. There are several proven technologies for maintaining thermal comfort in buildings of which the use of phase change material (PCM) in buildings provides improved thermal comfort with fewer energy requirements. The present study analyzes the impact of the incorporation of PCM in roofs on the thermal behavior of buildings. The experiments were conducted in two identical model building roofs with and without the implementation of PCM. A numerical model was developed to find the effect of variation in the PCM layer thickness and month wise temperature variations. To get minimum variation in the results, the simulation was run continuously for 5 days assuming average climatic conditions. The results showed that temperature fluctuations in the room were reduced with the use of PCM, and also the average peak temperature rise was reduced by 2–4°C. The increased PCM layer thickness resulted in decreased energy demand for maintaining the required thermal comfort in buildings at an almost constant temperature.

References

1.
Garg
,
H.
,
Pandey
,
B.
,
Saha
,
S. K.
,
Singh
,
S.
, and
Banerjee
,
R.
,
2018
, “
Design and Analysis of PCM Based Radiant Heat Exchanger for Thermal Management of Buildings
,”
Energy Build.
,
169
(
1
), pp.
84
96
. 10.1016/j.enbuild.2018.03.058
2.
Said
,
M. A.
, and
Hamdy
,
H.
,
2018
, “
An Experimental Work on the Effect of Using New Technique of Thermal Energy Storage of Phase Change Material on the Performance of Air Conditioning Unit
,”
Energy Build.
,
173
(
1
), pp.
353
364
. 10.1016/j.enbuild.2018.05.041
3.
de Gracia
,
A.
, and
Cabeza
,
L. F.
,
2015
, “
Phase Change Materials and Thermal Energy Storage for Buildings
,”
Energy Build.
,
103
(
1
), pp.
414
419
. 10.1016/j.enbuild.2015.06.007
4.
Reddy
,
K. S.
,
Mudgal
,
V.
, and
Mallick
,
T. K.
,
2017
, “
Thermal Performance Analysis of Multi-Phase Change Material Layer-Integrated Building Roofs for Energy Efficiency in Built-Environment
,”
Energies
,
10
(
9
), p.
1367
. 10.3390/en10091367
5.
Siva
,
K.
,
Lawrence
,
M. X.
,
Kumaresh
,
G. R.
,
Rajagopalan
,
P.
, and
Santhanam
,
H.
,
2010
, “
Experimental and Numerical Investigation of Phase Change Materials With Finned Encapsulation for Energy-Efficient Buildings
,”
J. Build. Perform. Simul.
,
3
(
4
), pp.
245
254
. 10.1080/19401491003624224
6.
Sasic Kalagasidis
,
A.
,
2014
, “
A Multi-Level Modelling and Evaluation of Thermal Performance of Phase-Change Materials in Buildings
,”
J. Build. Perform. Simul.
,
7
(
4
), pp.
289
308
. 10.1080/19401493.2013.764547
7.
Stritih
,
U.
, and
Butala
,
V.
,
2007
, “
Energy Saving in Building With PCM Cold Storage
,”
Int. J. Energy Res.
,
31
(
15
), pp.
1532
1544
. 10.1002/er.1318
8.
Gobinath
,
S.
,
Senthilkumar
,
G.
, and
Beemkumar
,
N.
,
2018
, “
Comparative Study of Room Temperature Control in Buildings With and Without the Use of PCM in Walls
,”
Energy Sources, Part A
,
40
(
14
), pp.
1765
1771
. 10.1080/15567036.2018.1486910
9.
Meng
,
E.
,
Yu
,
H.
, and
Zhou
,
B.
,
2017
, “
Study of the Thermal Behavior of the Composite Phase Change Material (PCM) Room in Summer and Winter
,”
Appl. Therm. Eng.
,
126
(
1
), pp.
212
225
. 10.1016/j.applthermaleng.2017.07.110
10.
Medina
,
M. A.
,
King
,
J. B.
, and
Zhang
,
M.
,
2008
, “
On the Heat Transfer Rate Reduction of Structural Insulated Panels (SIPs) Outfitted With Phase Change Materials (PCMs)
,”
Energy
,
33
(
4
), pp.
667
678
. 10.1016/j.energy.2007.11.003
11.
Vicente
,
R.
, and
Silva
,
T.
,
2014
, “
Brick Masonry Walls With PCM Macrocapsules: An Experimental Approach
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
24
34
. 10.1016/j.applthermaleng.2014.02.069
12.
Silva
,
T.
,
Vicente
,
R.
,
Amaral
,
C.
, and
Figueiredo
,
A.
,
2016
, “
Thermal Performance of a Window Shutter Containing PCM: Numerical Validation and Experimental Analysis
,”
Appl. Energy
,
179
(
1
), pp.
64
84
. 10.1016/j.apenergy.2016.06.126
13.
Abuelnuor
,
A. A. A.
,
Omara
,
A. A. M.
,
Saqr
,
K. M.
, and
Elhag
,
I. H. I.
,
2018
, “
Improving Indoor Thermal Comfort by Using Phase Change Materials: A Review
,”
Int. J. Energy Res.
,
42
(
6
), pp.
2084
2103
. 10.1002/er.4000
14.
Ye
,
R.
,
Lin
,
W.
,
Fang
,
X.
, and
Zang
,
Z.
,
2017
, “
A Numerical Study of Building Integrated With CaCl2 •6H2O/Expanded Graphite Composite Phase Change Material
,”
Appl. Therm. Eng.
,
126
(
1
), pp.
480
488
. 10.1016/j.applthermaleng.2017.07.191
15.
Beemkumar
,
N.
, and
Karthikeyan
,
A.
,
2016
, “
Experimental Analysis of Heat Transfer Characteristics of Solar Energy Based Latent Heat Storage System
,”
Mater. Today Proc.
,
3
(
6
), pp.
2475
2482
. 10.1016/j.matpr.2016.04.165
16.
Beemkumar
,
N.
,
Karthikeyan
,
A.
, and
Yuvarajan
,
D.
,
2017
, “
Heat Transfer Enhancement of a Cascaded Thermal Energy Storage System With Various Encapsulation Arrangements
,”
Therm. Sci.
,
23
(
2
), pp.
823
833
. 10.2298/TSCI160926227N
17.
Beemkumar
,
N.
,
Karthikeyan
,
A.
, and
Yuvarajan
,
D.
,
2018
, “
Energy and Exergy Analysis of Multi-Temperature PCMs Employed in a Latent Heat Storage System and Parabolic Trough Collector
,”
J. Non-Equilib. Thermodyn.
,
43
(
3
), pp.
211
220
. 10.1515/jnet-2017-0066
18.
Beemkumar
,
N.
,
Karthikeyan
,
A.
,
Yuvarajan
,
D.
, and
Lakshmi Shankar
,
S.
,
2017
, “
Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins
,”
Arabian J. Sci. Eng.
,
42
(
5
), pp.
2055
2065
. 10.1007/s13369-017-2455-9
19.
Beemkumar
,
N.
,
Yuvarajan
,
D.
,
Karthikeyan
,
A.
, and
Ganesan
,
S.
,
2019
, “
Comparative Experimental Study on Parabolic Trough Collector Integrated With Thermal Energy Storage System by Using Different Reflective Materials
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
941
948
. 10.1007/s10973-018-07989-6
20.
Tyagi
,
V. V.
, and
Buddhi
,
D.
,
2007
, “
PCM Thermal Storage in Buildings: A State of Art
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1146
1166
. 10.1016/j.rser.2005.10.002
21.
Zalba
,
B.
,
Marin
,
J.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
22.
Pasupathy
,
A.
,
Athanasius
,
L.
,
Velraj
,
R.
, and
Seeniraj
,
R. V.
,
2008
, “
Experimental Investigation and Numerical Simulation Analysis on the Thermal Performance of a Building Roof Incorporating Phase Change Material (PCM) for Thermal Management
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
556
565
. 10.1016/j.applthermaleng.2007.04.016
23.
Ramakrishnan
,
S.
,
Wangb
,
X.
,
Sanjayan
,
J.
, and
Wilson
,
J.
,
2017
, “
Thermal Performance Assessment of Phase Change Material Integrated Cementitious Composites in Buildings: Experimental and Numerical Approach
,”
Appl. Energy
,
207
(
1
), pp.
654
664
. 10.1016/j.apenergy.2017.05.144
24.
Alam
,
M.
,
Sanjayan
,
J.
,
Zou
,
P. X. W.
,
Ramakrishnan
,
S.
, and
Wilson
,
J.
,
2017
, “
Evaluating the Passive and Free Cooling Application Methods of Phase Change Materials in Residential Buildings: A Comparative Study
,”
Energy Build.
,
148
(
1
), pp.
238
256
. 10.1016/j.enbuild.2017.05.018
25.
Ramakrishnan
,
S.
,
Wang
,
X.
,
Alam
,
M.
,
Sanjayan
,
J.
, and
Wilson
,
J.
,
2016
, “
Parametric Analysis for Performance Enhancement of Phase Change Materials in Naturally Ventilated Buildings
,”
Energy Build.
,
124
(
1
), pp.
35
45
. 10.1016/j.enbuild.2016.04.065
26.
Koschenz
,
M.
, and
Lehmann
,
B.
,
2004
, “
Development of a Thermally Activated Ceiling Panel With PCM for Application in Lightweight and Retrofitted Buildings
,”
Energy Build.
,
36
(
6
), pp.
567
578
. 10.1016/j.enbuild.2004.01.029
27.
Arkar
,
C.
, and
Medved
,
S.
,
2007
, “
Free Cooling of a Building Using PCM Heat Storage Integrated Into the Ventilation System
,”
Sol. Energy
,
81
(
9
), pp.
1078
1087
. 10.1016/j.solener.2007.01.010
28.
Raj
,
V. A. A.
, and
Velraj
,
R.
,
2011
, “
Heat Transfer and Pressure Drop Studies on a PCM-Heat Exchanger Module for Free Cooling Applications
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1573
1582
. 10.1016/j.ijthermalsci.2011.01.025
29.
Cabeza
,
L. F.
,
Castellon
,
C.
,
Nogues
,
M.
,
Medrano
,
M.
,
Leppers
,
R.
, and
Zubillaga
,
O.
,
2007
, “
Use of Microencapsulated PCM in Concrete Walls for Energy Savings
,”
Energy Build.
,
39
(
2
), pp.
113
119
. 10.1016/j.enbuild.2006.03.030
30.
Jamil
,
H.
,
Alam
,
M.
,
Sanjayan
,
J.
, and
Wilson
,
J.
,
2016
, “
Investigation of PCM as Retrofitting Option to Enhance Occupant Thermal Comfort in a Modern Residential Building
,”
Energy Build.
,
133
(
1
), pp.
217
229
. 10.1016/j.enbuild.2016.09.064
31.
Jayalath
,
A.
,
Aye
,
L.
,
Mendis
,
P.
, and
Ngo
,
T.
,
2016
, “
Effects of Phase Change Material Roof Layers on Thermal Performance of a Residential Building in Melbourne and Sydney
,”
Energy Build.
,
121
(
1
), pp.
152
158
. 10.1016/j.enbuild.2016.04.007
32.
Cascone
,
Y.
,
Capozzoli
,
A.
, and
Perino
,
M.
,
2018
, “
Optimisation Analysis of PCM-Enhanced Opaque Building Envelope Components for the Energy Retrofitting of Office Buildings in Mediterranean Climates
,”
Appl. Energy
,
211
(
1
), pp.
929
953
. 10.1016/j.apenergy.2017.11.081
33.
Li
,
D.
,
Zheng
,
Y.
,
Liu
,
C.
, and
Wu
,
G.
,
2015
, “
Numerical Analysis on Thermal Performance of Roof Contained PCM of a Single Residential Building
,”
Energy Convers. Manage.
,
100
(
1
), pp.
147
156
. 10.1016/j.enconman.2015.05.014
34.
Pisello
,
A. L.
,
Castaldo
,
V. L.
,
Piselli
,
C.
,
Pignatta
,
G.
, and
Cotana
,
F.
,
2015
, “
Combined Thermal Effect of Cool Roof and Cool Façade on a Prototype Building
,”
Energy Procedia
,
78
(
1
), pp.
1556
1561
. 10.1016/j.egypro.2015.11.205
35.
Saffari
,
M.
,
Piselli
,
C.
,
de Gracia
,
A.
,
Pisello
,
A. L.
,
Cotana
,
F.
, and
Cabeza
,
L. F.
,
2018
, “
Thermal Stress Reduction in Cool Roof Membranes Using Phase Change Materials (PCM)
,”
Energy Build.
,
158
(
1
), pp.
1097
1105
. 10.1016/j.enbuild.2017.10.068
36.
Zhu
,
L.
,
Yang
,
Y.
,
Chen
,
S.
, and
Sun
,
Y.
,
2018
, “
Numerical Study on the Thermal Performance of Lightweight Temporary Building Integrated With Phase Change Materials
,”
Appl. Therm. Eng.
,
138
(
1
), pp.
35
47
. 10.1016/j.applthermaleng.2018.03.103
37.
Elarga
,
H.
,
Fantucci
,
S.
,
Serra
,
V.
,
Zecchin
,
R.
, and
Benini
,
E.
,
2017
, “
Experimental and Numerical Analyses on Thermal Performance of Different Typologies of PCMs Integrated in the Roof Space
,”
Energy Build.
,
150
(
1
), pp.
546
557
. 10.1016/j.enbuild.2017.06.038
38.
Lamberg
,
P.
,
Lehtiniemi
,
R.
, and
Henell
,
A.
,
2004
, “
Numerical and Experimental Investigation of Melting and Freezing Processes in Phase Change Material Storage
,”
Int. J. Therm. Sci.
,
43
(
3
), pp.
277
287
. 10.1016/j.ijthermalsci.2003.07.001
39.
Zhang
,
Y. P.
,
Lin
,
K. P.
,
Jiang
,
Y.
, and
Zhou
,
G. B.
,
2008
, “
Thermal Storage and Nonlinear Heat-Transfer Characteristics of PCM Wallboard
,”
Energy Build.
,
40
(
9
), pp.
1771
1779
. 10.1016/j.enbuild.2008.03.005
40.
Chen
,
C.
,
Guo
,
H. F.
,
Liu
,
Y. N.
,
Yue
,
H. L.
, and
Wang
,
C. D.
,
2008
, “
A New Kind of Phase Change Material (PCM) for Energy-Storing Wallboard
,”
Energy Build.
,
40
(
5
), pp.
882
890
. 10.1016/j.enbuild.2007.07.002
41.
Tiwari
,
G. N.
,
2002
,
Solar Energy Fundamentals, Design, Modelling and Applications
,
Alpha Science
,
New Delhi, India
.
42.
Algarni
,
S.
, and
Nutter
,
D.
,
2015
, “
Influence of Dust Accumulation on Building Roof Thermal Performance and Radiant Heat Gain in Hot-Dry Climates
,”
Energy Build.
,
104
(
1
), pp.
181
190
. 10.1016/j.enbuild.2015.07.018
43.
Swinbank
,
W. C.
,
1963
, “
Longwave Radiation From Clear Sky
,”
Q. J. R. Metereol. Soc.
,
89
(
381
), pp.
339
348
. 10.1002/qj.49708938105
44.
Pasupathy
,
A.
, and
Velraj
,
R.
,
2008
, “
Effect of Double Layer Phase Change Material in Building Roof for Year Round Thermal Management
,”
Energy Build.
,
40
(
3
), pp.
193
203
. 10.1016/j.enbuild.2007.02.016
45.
Asan
,
H.
,
2006
, “
Numerical Computation of Time Lags and Decrement Factors for Different Building Materials
,”
Build. Environ.
,
41
(
5
), pp.
615
620
. 10.1016/j.buildenv.2005.02.020
46.
Ulgen
,
K.
,
2002
, “
Experimental and Theoretical Investigation of Effects of Wall’s Thermophysical Properties on Time Lag and Decrement Factor
,”
Energy Build.
,
34
(
3
), pp.
273
278
. 10.1016/S0378-7788(01)00087-1
47.
Heim
,
D.
, and
Wieprzkowicz
,
A.
,
2018
, “
Attenuation of Temperature Fluctuations on an External Surface of the Wall by a Phase Change Material-Activated Layer
,”
Appl. Sci.
,
8
(
1
), p.
11
. 10.3390/app8010011
48.
Berardi
,
U.
,
2019
, “
Experimental Investigation of Latent Heat Thermal Energy Storage Using PCMs With Different Melting Temperatures for Building Retort
,”
Energy Build.
,
185
(
1
), pp.
180
195
. 10.1016/j.enbuild.2018.12.016
49.
Hasan
,
M.
,
Alam
,
S.
, and
Ahmed
,
D. H.
,
2017
, “
Effect of Phase Change Material on The Heat Transfer Rate of Different Building Materials
,”
Proceedings of the 1st International Conference on Mechanical Engineering and Applied Science (ICMEAS 2017) AIP Conf. Proc, 1919
,
Dhaka, Bangladesh
,
Feb. 22–23
, p.
020029
. doi:10.1063/1.5018547
50.
Guan
,
Y.
,
Bai
,
J.
,
Gao
,
X.
,
Hu
,
W.
,
Chen
,
C.
, and
Hu
,
W.
,
2017
, “
Thickness Determination of a Three-Layer Wall With Phase Change Materials in a Chinese Solar Greenhouse
,”
Procedia Eng.
,
205
, pp.
130
136
. 10.1016/j.proeng.2017.09.944
You do not currently have access to this content.