Abstract

Two combined cooling heating power (CCHP) plant layouts are proposed to supply the electricity, heat, and cooling energy demands of textile industries. In the first scenario, natural gas fueled internal combustion engines are integrated with a heat recovery steam generator (HRSG) and a hot water absorption chiller to produce electricity, saturated steam, and chilled water for air conditioning purposes. In the second concept, a linear Fresnel solar field is integrated with the same CCHP to provide fuel economy during the sunny hours. The proposed plants were compared with a base case scenario in which electricity is imported from the grid, saturated steam is provided by a natural gas steam generator (NGSG), and chilled water is provided by electric chillers. Simulations were performed considering mass and energy conservation equations, information provided by equipment manufacturers and typical meteorological year (TMY) data sets for three different locations. The economic performance of plants was evaluated by calculating the net present value (NPV), the internal rate of return (IRR), and the discounted payback period (DPP) of investments. As an important result, a great potential for reducing the fuel consumption and CO2 emissions of hybrid concept was identified. However, the high investment of Fresnel collectors coupled with low natural gas prices showed the proposed hybrid concept as economically unfeasible. Nevertheless, it is expected that hybrid systems will have an important role once Fresnel technology costs are continuously declining and solar energy appears as a promising alternative for the sustainable transition to a low carbon future.

References

References
1.
Sampaio
,
P.
, and
González
,
M.
,
2017
, “
Photovoltaic Solar Energy: Conceptual Framework
,”
Elsevier Renewable Sustainable Energy Rev.
,
74
(
July
), pp.
590
601
. 10.1016/j.rser.2017.02.081
2.
Mujeebu
,
M.
,
Jayaraj
,
S.
,
Ashok
,
S.
,
Abdullah
,
M.
, and
Khalil
,
M.
,
2009
, “
Feasibility Study of Cogeneration in a Plywood Industry With Power Export to Grid
,”
Appl. Energy
,
86
(
5
), pp.
657
662
. 10.1016/j.apenergy.2008.06.012
3.
Oliveira
,
T. L.
,
Assis
,
P. S.
,
Leal
,
E. M.
, and
Ilídio
,
J. R.
,
2015
, “
Study of Biomass Applied to a Cogeneration System: A Steelmaking Industry Case
,”
Appl. Therm. Eng.
,
80
(
Apr.
), pp.
269
278
. 10.1016/j.applthermaleng.2015.01.002
4.
Erdinc
,
O.
, and
Uzunoglu
,
M.
,
2012
, “
Optimum Design of Hybrid Renewable Energy Systems: Overview of Different Approaches
,”
Renewable Sustainable Energy Rev.
,
16
(
3
), pp.
1412
1425
. 10.1016/j.rser.2011.11.011
5.
Kalogirou
,
S.
,
2003
, “
The Potential of Solar Industrial Process Heat Applications
,”
Appl. Energy.
,
76
(
4
), pp.
337
361
. 10.1016/S0306-2619(02)00176-9
6.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2011
, “
A Review on Solar Energy Use in Industries
,”
Renewable Sustainable Energy. Rev.
,
15
(
4
), pp.
1777
1790
. 10.1016/j.rser.2010.12.018
7.
Sánchez
,
F.
,
Sánchez
,
J.
, and
Miguel
,
G. S.
,
2016
, “
Biomass Resources to Hybridize Csp With Biomethane: Potential of Horticultural Residues and Drought-Tolerant Crops.
,”
The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops.
[
Proc. Comput. Sci.
,
83
,
1102
1109
(
2016
)]. 10.1016/j.procs.2016.04.230
8.
Guadalupe
,
T.
,
Eduardo
,
E.
, and
Bazzo
,
E.
,
2018
, “
Solar Energy as an Alternative to Partially Supply the Steam and the Hot Water Demands of a poultry Slaughterhouse
,”
ECOS 2018
,
Guimarães, Portugal
,
June 17–22
.
9.
Burin
,
E. K.
,
Vogel
,
T.
,
Multhaupt
,
S.
,
Thelen
,
A.
,
Oeljeklaus
,
G.
,
Görner
,
K.
, and
Bazzo
,
E.
,
2016
, “
Thermodynamic and Economic Evaluation of a Solar Aided Sugarcane Bagasse Cogeneration Power Plant
,”
Energy
,
117
(
P2
), pp.
416
428
. 10.1016/j.energy.2016.06.071
10.
Gabbrielli
,
R.
, and
Zammori
,
F.
,
2011
, “
Potential for Cogeneration Through Solar Energy in the Tissue Industry: Technical and Economic Aspects
,”
ASME J. Sol. Energy. Eng.
,
134
(
1
), p.
011015
. 10.1115/1.4005087
11.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed
.,
Wiley
,
New York
.
12.
Short
,
W.
,
Packey
,
D.
, and
Holt
,
T.
,
1995
, “
A manual for the economic evaluation of energy efficiency and renewable energy technologies
,” NASA STI/Recon Technical Report No. 95, 03.
13.
SWERA
,
2018
,
Solar and Wind Energy Resource Assessment – Global Solar Altas
.
14.
Industrial Solar
,
2017
,
Technical Data – Fresnel Collector LF-11, Germany
.
15.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Haberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy.
,
86
(
1
), pp.
1
12
. 10.1016/j.solener.2011.06.020
16.
Mills
,
D. R.
, and
Morrison
,
G. L.
,
2000
, “
Compact Linear Fresnel Reflector Solar Thermal Powerplants
,”
Sol. Energy.
,
68
(
3
), pp.
263
283
. 10.1016/S0038-092X(99)00068-7
17.
Heimsath
,
A.
,
Cuevas
,
F.
,
Hofer
,
A.
,
Nitz
,
P.
, and
Platzer
,
W.
,
2014
, “
Linear Fresnel Collector Receiver: Heat Loss and Temperatures
,”
Proceedings of the SolarPACES 2013 International Conference
,
49
, pp.
386
397
. 10.1016/j.egypro.2014.03.042
18.
Wu
,
S.-Y.
,
Zhou
,
S.-M.
,
Xiao
,
L.
,
Li
,
Y.-R.
,
Liu
,
C.
, and
Xu
,
J.-L.
,
2014
, “
Determining the Optimal Pinch Point Temperature Difference of Evaporator for Waste Heat Recovery
,”
J. Energy Inst.
,
87
(
2
), pp.
140
151
. 10.1016/j.joei.2014.03.010
19.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
1st ed.
,
Academic Press
,
New York
, pp.
1
492
.
20.
CELESC
,
2017
,
Electricity Utility Company of the Santa Catarina State
,
Brazil
.
21.
SCGAS
,
2017
,
Natural Gas Utility Company of the Santa Catarina State
,
Brazil
.
22.
Blanco
,
M.
, and
Ramirez
,
L.
,
2017
,
Advances in Concentrating Solar Thermal Research and Technology
,
Woodhead Publishing
,
Oxford
, pp.
1
494
.
23.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
,
E.
,
2011
, “
Development of An Innovative Code for the Design of Thermodynamic Solar Power Plants Part A: Code Description and Test Case
,”
Renewable Energy
,
36
(
7
), pp.
1993
2003
. 10.1016/j.renene.2010.12.027
24.
SUMMERHEAT
,
2007
,
Meeting Cooling Demands in SUMMER by Applying HEAT from Cogeneration
,
Denmark
.
25.
Tsumura
,
T.
,
Okazaki
,
H.
,
Dernjatin
,
P.
, and
Savolainen
,
K.
,
2003
, “
Reducing the Minimum Load and Nox Emissions for Lignite-Fired Boiler by Applying a Stable-Flame Concept
,”
Appl. Energy
,
74
(
3
), pp.
415
424
. Energex 2002 - Coal and Clean Coal Technologies - Topic II. 10.1016/S0306-2619(02)00196-4
26.
INMET
,
2017
,
National Institute of Meteorology
,
Brazil
.
27.
Gabbrielli
,
R.
,
Castrataro
,
P.
,
Medico
,
F. D.
,
Palo
,
M. D.
, and
Lenzo
,
B.
,
2014
, “
Levelized Cost of Heat for Linear Fresnel Concentrated Solar Systems
,”
SolarPACES 2013 - International Conference.
Energy Proc.
,
49
,
1340
1349
.10.1016/j.egypro.2014.03.143
28.
Kong
,
X.
,
Wang
,
R.
, and
Huang
,
X.
,
2004
, “
Energy Efficiency and Economic Feasibility of Cchp Driven by Stirling Engine
,”
Energy. Convers. Manage.
,
45
(
9
), pp.
1433
1442
. 10.1016/j.enconman.2003.09.009
You do not currently have access to this content.