Missions to Mars need a power source, while, one of the most compatible sources for such a purpose is the photovoltaic system. Photovoltaic systems generate power based on the available energy from the Sun, and thus, solar radiation intensity at Mars should be known for design purposes. In this research, the feed-forward back-propagation artificial neural network is developed to predict solar radiation in terms of longitude, latitude, time of the day, temperature, altitude, pressure, amount of dust, and volume mixing ratio of water ice clouds. Data which are used to develop this model are obtained from the Mars Climate Database. The results of the developed method are accurate as compared with other methods whereas the correlation (R2) coefficient for the developed model is 0.97. The developed model then is used to predict mean solar radiation and mean temperature for every location on Mars and then the data are presented on Mars maps in order to determine the best location for harvesting energy from the Sun by photovoltaic systems. According to results, the solar radiation-temperature belt on Mars is found to be between latitudes 20 deg south and 15 deg north.

References

1.
NASA
,
2017
,
Robotic mars exploration
[online]. National Aeronautics and Space Administration. https://www.nasa.gov/mission_pages/mars/missions. Accessed February 28, 2018.
2.
Williams
,
D. D. R.
,
2016
,
Mars fact sheet
[online]. Greenbelt, md 20771: NASA Goddard Space Flight Center. https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html. Accessed February 28, 2018.
3.
Appelbaum
,
J.
, and
Flood
,
D. J.
,
1990
, “
Solar Radiation on Mars
,”
Sol. Energy
,
45
(
6
), pp.
353
363
.
4.
Grant
,
J. A.
,
Golombek
,
M. P.
,
Grotzinger
,
J. P.
,
Wilson
,
S. A.
,
Watkins
,
M. M.
,
Vasavada
,
A. R.
,
Griffes
,
J. L.
, and
Parker
,
T. J.
,
2011
, “
The Science Process for Selecting the Landing Site for the 2011 Mars Science Laboratory
,”
Planet. Space Sci.
,
59
(
11–12
), pp.
1114
1127
.
5.
Badescu
,
V.
,
2009
,
Available Solar Energy and Weather Forecasting on Mars Surface. Mars
,
Springer,
New York
.
6.
Badescu
,
V.
,
2001
, “
Inference of Atmospheric Optical Depth From Near-Surface Meteorological Parameters on Mars
,”
Renewable Energy
,
24
(
1
), pp.
45
57
.
7.
Appelbaum
,
J.
,
Landis
,
G. A.
, and
Sherman
,
I.
,
1993
, “
Solar Radiation on Mars—Update 1991
,”
Sol. Energy
,
50
(
1
), pp.
35
51
.
8.
Golombek
,
M.
,
Grant
,
J. A.
,
Parker
,
T.
,
Kass
,
D.
,
Crisp
,
J.
,
Squyres
,
S. W.
,
Haldemann
,
A.
,
Adler
,
M.
,
Lee
,
W.
, and
Bridges
,
N.
,
2003
, “
Selection of the Mars Exploration Rover Landing Sites
,”
J. Geophys. Res.: Planets
,
108
, pp.
1
13
, E12.
9.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T.
,
1998
, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renewable Energy
,
14
(
1–4
), pp.
179
184
.
10.
Rehman
,
S.
, and
Mohandes
,
M.
,
2009
, “
Estimation of Diffuse Fraction of Global Solar Radiation Using Artificial Neural Networks
,”
Energy Sources, Part A
,
31
(
11
), pp.
974
984
.
11.
Khatib
,
T.
,
Mohamed
,
A.
,
Sopian
,
K.
, and
Mahmoud
,
M.
,
2012
, “
Solar Energy Prediction for Malaysia Using Artificial Neural Networks
,”
Int. J. Photoenergy
,
2012
, pp.
1
12
.
12.
Kadirgama
,
K.
,
Amirruddin
,
A.
, and
Bakar
,
R.
,
2014
, “
Estimation of Solar Radiation by Artificial Networks: East Coast Malaysia
,”
Energy Procedia
,
52
, pp.
383
388
.
13.
Sözen
,
A.
,
Arcaklioǧlu
,
E.
,
Özalp
,
M.
, and
Kanit
,
E. G.
,
2004
, “
Use of Artificial Neural Networks for Mapping of Solar Potential in Turkey
,”
Appl. Energy
,
77
(
3
), pp.
273
286
.
14.
Matz
,
E.
,
Appelbaum
,
J.
,
Taitel
,
Y.
, and
Flood
,
D.
,
1998
, “
Solar Cell Temperature on Mars
,”
J. Propul. Power
,
14
(
1
), pp.
119
125
.
15.
Vicente-Retortillo
,
Á
,
Valero
,
F.
,
Vázquez
,
L.
, and
Martínez
,
G. M.
,
2015
, “
A Model to Calculate Solar Radiation Fluxes on the Martian Surface
,”
J. Space Weather Space Climate
,
5
, p.
a33
.
16.
Landis
,
G. A.
, and
Jenkins
,
P. P.
, “
Dust Mitigation for Mars Solar Arrays. Photovoltaic Specialists Conference, 2002
,”
Conference Record of the Twenty-Ninth IEEE, 2002
,
New Orleans, LA
,
Apr. 22
,
IEEE
, pp.
812
815
.
17.
Gierasch
,
P. J.
, and
Goody
,
R. M.
,
1972
, “
The Effect of Dust on the Temperature of the Martian Atmosphere
,”
J. Atmos. Sci.
,
29
, pp.
400
402
.
18.
Madeleine
,
J. B.
,
Forget
,
F.
,
Millour
,
E.
,
Navarro
,
T.
, and
Spiga
,
A.
,
2012
, “
The Influence of Radiatively Active Water Ice Clouds on the Martian Climate
,”
Geophys. Res. Lett.
,
39
, pp.
1
5
, L23202.
19.
Tymvios
,
F. S.
,
Michaelides
,
S. C.
, and
Skouteli
,
C. S.
,
2008
, “Estimation of Surface Solar Radiation With Artificial Neural Networks.”
Modeling Solar Radiation at the Earth’s Surface
,
Springer,
New York
.
20.
Millour
,
E.
, and
Lewis
,
S. R.
,
2017
,
Mars Climate Database v5.3 User Manual
.
21.
Forget
,
F.
,
Vals
,
E. M. M.
,
Zakharov
,
V.
, and
Lewis
,
S. R.
,
2017
,
Mars Climate Database v5.3 Detailed Design Document
.
22.
Kumar
,
R.
,
Aggarwal
,
R.
, and
Sharma
,
J.
,
2015
, “
Comparison of Regression and Artificial Neural Network Models for Estimation of Global Solar Radiations
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1294
1299
.
23.
Nasa
,
2000
,
Color-Coded Elevations on Mars, MOLA Altimeter, MGS Mission
. NASA Goddard Spaceflight Center.
You do not currently have access to this content.