A novel idea of using two receivers on the same tower in a solar tower system is introduced and investigated. The idea is to have two receivers at the same tower at different heights and sharing the same heliostat field. The pointing strategy for each heliostat is to pick the receiver that gives the maximum optical efficiency. To investigate this idea, two receivers are placed on the tower, one at the top and one at the midway up the tower. The biomimetic “spiral” distribution scheme is used to design the heliostat field, and the particle swarm optimization (PSO) method is used to obtain the optimum field shape factors. The model equations for calculating the optical field efficiency are presented and coded using the matlab software. The code is validated against known cases. To quantify the effect of the idea introduced in this paper, a solar field for the 50 MWth solar tower system with a single receiver is designed for Ma'an, Jordan (Ma’an enjoys high values of direct normal irradiance). It is found that the annual weighted optical efficiency for the 50 MWth plant in Ma’an for a single receiver is 67.14%, while it reaches 67.64% using the two-receiver system. Furthermore, the study shows that having two receivers on the same tower could save two heliostats and 11,000 m2 of needed land area to obtain the same power as a single-receiver tower. The economic analysis for this 50 MWth plant shows that savings can be obtained from having an extra receiver on the same tower of the same quality as the main receiver when the specific land area exceeds 65 $/m2.

References

References
1.
Foster
,
R.
,
Ghassemi
,
M.
, and
Cota
,
A.
,
2010
,
Solar Energy: Renewable Energy and the Environment
,
Taylor & Francis Group
,
New York
.
2.
Ashley
,
T.
,
Carrizosa
,
E.
, and
Fernández-Cara
,
E.
,
2017
, “
Optimisation of Aiming Strategies in Solar Power Tower Plants
,”
Energy
,
137
, pp.
285
291
.
3.
Emes
,
M. J.
,
Arjomandi
,
M.
, and
Nathan
,
G. J.
,
2015
, “
Effect of Heliostat Design Wind Speed on the Levelised Cost of Electricity From Concentrating Solar Thermal Power Tower Plants
,”
Sol. Energy
,
115
, pp.
441
451
.
4.
Kistler
,
B. L.
,
1986
, “
A User’s Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
,” p. Medium: X; Size: p.
231
.
5.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
,
2012
, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Sol. Energy
,
86
(
2
), pp.
792
803
.
6.
Zhou
,
Y.
, and
Zhao
,
Y.
,
2014
, “
Heliostat Field Layout Design for Solar Tower Power Plant Based on GPU
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
4953
4958
.
7.
Ramos
,
A.
, and
Ramos
,
F.
,
2012
, “
Strategies in Tower Solar Power Plant Optimization
,”
Sol. Energy
,
86
(
9
), pp.
2536
2548
.
8.
Mutuberria
,
A.
,
Pascual
,
J.
,
Guisado
,
M. V.
, and
Mallor
,
F.
,
2015
, “
Comparison of Heliostat Field Layout Design Methodologies and Impact on Power Plant Efficiency
,”
Energy Procedia
,
69
, pp.
1360
1370
.
9.
Barberena
,
J. G.
,
Larrayoz
,
A. M.
,
Sánchez
,
M.
, and
Bernardos
,
A.
,
2016
, “
State-of-the-Art of Heliostat Field Layout Algorithms and Their Comparison
,”
Energy Procedia
,
93
, pp.
31
38
.
10.
Saghafifar
,
M.
,
Gadalla
,
M.
, and
Mohammadi
,
K.
,
2019
, “
Thermo-Economic Analysis and Optimization of Heliostat Fields Using AINEH Code: Analysis of Implementation of Non-Equal Heliostats (AINEH)
,”
Renew. Energy
,
135
, pp.
920
935
.
11.
Kiwan
,
S.
, and
Al Hamad
,
S.
,
2018
, “
On Analyzing the Optical Performance of Solar Central Tower Systems on Hillsides Using Biomimetic Spiral Distribution
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011010
.
12.
Vant-Hull
,
L.
,
2014
, “
Issues With Beam-Down Concepts
,”
Energy Procedia
,
49
, pp.
257
264
.
13.
Carrizosa
,
E.
,
Domínguez-Bravo
,
C.
,
Fernández-Cara
,
E.
, and
Quero
,
M.
,
2015
, “
Optimization of Multiple Receivers Solar Power Tower Systems
,”
Energy
,
90
, pp.
2085
2093
.
14.
Piroozmand
,
P.
, and
Boroushaki
,
M.
,
2016
, “
A Computational Method for Optimal Design of the Multi-Tower Heliostat Field Considering Heliostats Interactions
,”
Energy
,
106
, pp.
240
252
.
15.
Mustafa
,
M. A.
,
Abdelhady
,
S.
, and
Elweteedy
,
A. A.
,
2012
, “
Analytical Study of an Innovated Solar Power Tower (PS10) in Aswan
,”
Int. J. Energy Eng.
,
2
(
6
), pp.
273
278
.
16.
Pitz-Paal
,
R.
,
Botero
,
N. B.
, and
Steinfeld
,
A.
,
2011
, “
Heliostat Field Layout Optimization for High-Temperature Solar Thermochemical Processing
,”
Sol. Energy
,
85
(
2
), pp.
334
343
.
17.
Cruz
,
N. C.
,
Redondo
,
J. L.
,
Berenguel
,
M.
,
Álvarez
,
J. D.
,
Becerra-Teron
,
A.
, and
Ortigosa
,
P. M.
,
2017
, “
High Performance Computing for the Heliostat Field Layout Evaluation
,”
J. Supercomput.
,
73
(
1
), pp.
259
276
.
18.
Kiwan
,
S.
, and
Khammash
,
A. L.
,
2018
, “
Investigations Into the Spiral Distribution of the Heliostat Field in Solar Central Tower System
,”
Sol. Energy
,
164
, pp.
25
37
.
19.
Wei
,
X.
,
Lu
,
Z.
,
Yu
,
W.
, and
Wang
,
Z.
,
2010
, “
A New Code for the Design and Analysis of the Heliostat Field Layout for Power Tower System
,”
Sol. Energy
,
84
(
4
), pp.
685
690
.
20.
Ewert
,
M.
, and
Fuentes
,
O. N.
,
2012
, “
Modelling and Simulation of a Solar Tower Power Plant
,” http://www.mathcces.rwthaachen.de/_media/5people/frank/solartower.pdf/, Accessed July 16, 2019.
21.
Eddhibi
,
F.
,
Ben Amara
,
M.
,
Balghouthi
,
M.
, and
Guizani
,
A.
,
2015
, “
Optical Study of Solar Tower Power Plants
,”
J. Phys. Conf. Ser.
,
596
(
1
), p.
012018
.
22.
Besarati
,
S. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Optimal Heliostat Aiming Strategy for Uniform Distribution of Heat Flux on the Receiver of a Solar Power Tower Plant
,”
Energy Convers. Manag.
,
84
, pp.
234
243
.
23.
Schwarzbözl
,
P.
,
Schmitz
,
M.
, and
Pitz-Paal
,
R.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,”
SolarPACES Conf.
, pp.
15
18
.
24.
Collado
,
F. J.
,
2010
, “
One-Point Fitting of the Flux Density Produced by a Heliostat
,”
Sol. Energy
,
84
(
4
), pp.
673
684
.
25.
Besarati
,
S. M.
, and
Goswami
,
D. Y.
,
2014
, “
A Computationally Efficient Method for the Design of the Heliostat Field for Solar Power Tower Plant
,”
Renew. Energy
,
69
, pp.
226
232
.
26.
Anton
,
H.
,
Bivens
,
I.
, and
Davis
,
S.
,
2009
,
Calculus Early: Trancendentals
,
9th ed.
,
Laurie Rosatone
,
Jefferson City
.
27.
Goswami
,
D. Y.
,
2015
,
Principles of Solar Engineering
,
3rd ed.
,
Taylor & Francis Group
,
New York
.
28.
Khammash
,
A. L.
,
2017
,
Using Multi-Receivers in Solar Central Tower Systems
, M.Sc. thesis,
Jordan University Of Science and Technology
,
Ramtha, Jordan
.
29.
Ramos
,
A.
, and
Ramos
,
F.
,
2014
, “
Heliostat Blocking and Shadowing Efficiency in the Video-Game Era
,” arXiv Prepr. arXiv1402.1690, p.
8
.
30.
Marini
,
F.
, and
Walczak
,
B.
,
2015
, “
Particle Swarm Optimization (PSO). A Tutorial
,”
Chemom. Intell. Lab. Syst.
,
149
, pp.
153
165
.
31.
Dash
,
J.
,
Dam
,
B.
, and
Swain
,
R.
,
2016
, “
Optimal Design of Linear Phase Multi-Band Stop Filters Using Improved Cuckoo Search Particle Swarm Optimization
,”
Appl. Soft Comput.
,
52
, pp.
435
445
.
32.
SOLARGIS
,
2017
, “
Direct Solar Irradiation Map
,” solargis.info.
33.
Toghraie
,
D.
,
Karami
,
A.
,
Afrand
,
M.
, and
Karimipour
,
A.
,
2018
, “
Effects of Geometric Parameters on the Performance of Solar Chimney Power Plants
,”
Energy
,
162
, pp.
1052
1061
.
34.
Kiwan
,
S.
,
Al-Nimr
,
M.
, and
Abdel Salam
,
Q. I.
,
2018
, “
Solar Chimney Power-Water Distillation Plant (SCPWDP)
,”
Desalination
,
445
, pp.
105
114
.
35.
Schmitz
,
M.
,
Schwarzbozl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement Due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
, pp.
111
120
.
36.
Li
,
C.
,
Zhai
,
R.
,
Yang
,
Y.
,
Patchigolla
,
K.
,
Oakey
,
J. E.
, and
Turner
,
P.
,
2019
, “
Annual Performance Analysis and Optimization of a Solar Tower Aided Coal-Fired Power Plant
,”
Appl. Energy
,
237
, pp.
440
456
.
You do not currently have access to this content.