In this paper, thermal-fluid modeling of nonporous/porous thermal coil filled by alumina nanofluid is discussed considering constant/variable solar heat fluxes. The fluxes are calculated for a parabolic concentrator at the solar paths for the city with a longitude of 59.20 deg and latitude of 32.87 deg in the clear sky at spring season. The governing equations are included as continuity, momentum, and energy conservations with considering variable solar flux by shadow effects of the coil on the parabolic concentrator. The numerical model is based on the finite element method by LU algorithm using the mumps solver. The results show that, in a porous medium, that the normalized temperature of the presented model has an acceptable agreement with experimental data with maximum errors of 3%. The existence of porosity significantly increases heat transfer parameters that improve transferred solar heat from the wall of the coil to nanofluid. The variable solar heat flux increases the temperature in the length of the coil rather than constant heat fluxes because of increasing exchanged heat to nanofluid.

References

1.
Chakole
,
M. M.
,
2016
,
Heat Transfer Enhancement Techniques: With Special Attention to Passive Methods of Heat Transfer Enhancement
,
English Hamburg Anchor Academic Publishing
,
Hamburg
.
2.
Behnampour
,
A.
,
Akbari
,
O. A.
, and
Safaei
,
M.
,
2017
, “
Analysis of Heat Transfer and Nanofluid Flow in Microchannels With Trapezoidal, Rectangular and Triangular Shaped Ribs
,”
Physica E
,
91
(
4
), pp.
15
31
.
3.
Davarnejad
,
R.
, and
Ardehali
,
R. M.
,
2014
, “
Modeling of TiO2-Water Nanofluid Effect on Heat Transfer and Pressure Drop
,”
Int. J. Eng.
,
27
(
2
), pp.
195
202
.
4.
Karimipour
,
A.
, and
Orazio
,
A. D.
,
2016
, “
The Effects of Different Nanoparticles of Al2O3 and Ag on the MHD Nanofluid Flow and Heat Transfer in a Microchannel Including Slip Velocity and Temperature Jump
,”
Physica E
,
86
(
10
), pp.
146
153
.
5.
Keshavarz
,
M.
,
Darabi
,
M.
,
Mohammad
,
S.
,
Haddad
,
H.
, and
Davarnejad
,
R.
,
2011
, “
Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow With Computational Fluid Dynamics
,”
Int. Commun. Heat. Mass.
,
38
(
9
), pp.
1291
1295
.
6.
Dalil
,
M.
, and
Zare
,
N.
,
2010
, “
Existing Methods for Calculating Thermal Conductivity in Nanofluids
,”
Iran Nanotechnology Innovation Council
,
10
, pp.
11
17
.
7.
Zeinali Heris
,
S.
,
Noie
,
S. H.
,
Talaii
,
E.
, and
Sargolzaei
,
J.
,
2011
, “
Numerical Investigation of Al2O3/Water Nanofluid Laminar Convective Heat Transfer Through Triangular Ducts
,”
Nanoscale Res. Lett.
,
6
(
179
), pp.
179
188
.
8.
Pourmehran
,
O.
,
Rahimi-gorji
,
M.
,
Hatami
,
M.
,
Sahebi
,
S. A. R.
, and
Domairry
,
G.
,
2015
, “
Numerical Optimization of Microchannel Heat Sink (MCHS) Performance Cooled by KKL Based Nanofluids in Saturated Porous Medium
,”
J. Taiwan. Inst. Chem. E
,
55
, pp.
49
68
.
9.
Sasmito
,
A. P.
,
Kurnia
,
J. C.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
14
.
10.
Sabir
,
R.
,
Ramzan
,
N.
,
Umer
,
A.
, and
Muryam
,
H.
,
2015
, “
An Experimental Study of Forced Convective Heat Transfer Characteristic of Gold Water Nanofluid in Laminar Flow
,”
Sci. Int.
,
27
(
1
), pp.
235
241
.
11.
Abdulrasool
,
H.
,
Sopian
,
K.
,
Hameed
,
A.
, and
Al-shamani
,
A. N.
,
2017
, “
Experimental Investigation of Jet Array Nanofluids Impingement in Photovoltaic/Thermal Collector
,”
Sol. Energy
,
144
(
6
), pp.
321
334
.
12.
Kabeel
,
A. E.
, and
Abdelgaied
,
M.
,
2016
, “
Study on the Effect of Alumina Nanofluid on Sharp-Edge Orifice Flow Characteristics in Both Cavitations and Non-Cavitations Turbulent Flow Regimes
,”
Alex. Eng. J.
,
55
(
2
), pp.
1099
1106
.
13.
Sik
,
K.
,
Pil
,
S.
, and
Choi
,
S. U. S.
,
2009
, “
International Journal of Heat and Mass Transfer Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
.
14.
Bayomy
,
A. M.
, and
Saghir
,
M. Z.
,
2017
, “
Experimental Study of Using c-Al2O3–Water Nanofluid Flow Through Aluminum Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
107
(
3
), pp.
181
203
.
15.
Rezapour
,
M.
, and
Fanaee
,
A.
,
2017
, “
Modeling the Thermal-Fluid Effects of Porous Media on the Mixture of Hydrogen-Air Passing Through it With COMSOL
,”
Fourth Conference on Hydrogen and Fuel Cells.
,
Tehran
, pp.
1
6
.
16.
Furman
,
E. L.
,
Finkelstein
,
A. B.
, and
Cherny
,
M. L.
,
2013
, “
Permeability of Aluminium Foams Produced by Replication Casting
,”
Metals (Basel)
,
3
(
1
), pp.
49
57
.
17.
Dukhan
,
N.
, and
Chen
,
K.-C.
,
2007
, “
Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
624
631
.
18.
Salameh
,
T.
,
Zurigat
,
Y.
,
Badran
,
A.
,
Ghenai
,
C.
,
Assad
,
M. E. H.
,
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
Numerical Investigation of Two Phase Flow Over Unglazed Plate Collector Covered With Porous Material of Wire Screen for Solar Water Heater Application
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031009
.
19.
Zafariyan
,
S.
,
Fanaee
,
A.
, and
Mohammadzadeh
,
A.
,
2013
, “
The Investigation of Thermal and Solutal Secondary Effects on MHD Convective Transfer Past a Vertical Surface in a Porous Medium
,”
Arab. J. Sci. Eng.
,
38
(
11
), pp.
3211
3220
.
20.
Zafariyan
,
S.
, and
Fanaee
,
S. A.
,
2013
, “
MHD Mixed Convective Flow Past a Vertical Plate Embedded in a Porous Medium With Radiation Effects and Convective Boundary Condition Considering Chemical Reaction
,”
Cankaya Univ. J. Sci. Eng.
,
10
(
1
), pp.
123
136
.
21.
Bijan
,
A.
, and
Nield
,
D. A.
,
2006
,
Convection in Porous Media Convection in Porous Media
, 3rd ed,
Springer-Verlag
,
New York
.
22.
Diersch
,
H.-J. G.
,
2013
,
Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media
,
Springer-Verlag
,
Berlin
.
23.
Otanicar
,
T.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2010
, “
Parametric Analysis of a Coupled Photovoltaic/Thermal Concentrating Solar Collector for Electricity Generation
,”
J. Appl. Phys.
,
108
(
11
), p.
114907
.
24.
Papadopoulos
,
A.
,
Tsoutsos
,
T.
,
Frangou
,
M.
,
Kalaitzakis
,
K.
,
Stefanakis
,
N.
, and
Boudouvis
,
A. G.
,
2015
, “
“Innovative Optics for Concentrating Photovoltaic/Thermal (CPVT) Systems—The Case of the PROTEAS Solar Polygeneration System
,”
Int. J. Sustain. Energy
,
37
(
11
), pp.
775
776
.
25.
Riffat
,
S. B.
, and
Cuce
,
E.
,
2011
, “
A Review on Hybrid Photovoltaic/Thermal Collectors and Systems
,”
Int. J. Low-Carbon Tech.
,
6
(
3
), pp.
212
241
.
26.
Sharaf
,
O. Z.
, and
Orhan
,
M. F.
,
2015
, “
Concentrated Photovoltaic Thermal (CPVT) Solar Collector Systems: Part I—Fundamentals, Design Considerations and Current Technologies
,”
Renew. Sust. Energ. Rev.
,
50
, pp.
1500
1565
.
27.
Silva
,
R. M.
, and
Fernandes
,
J. L. M.
,
2010
, “
Hybrid Photovoltaic/Thermal (PV/T) Solar Systems Simulation With Simulink/Matlab
,”
Sol. Energy
,
84
(
12
), pp.
1985
1996
.
28.
Vorndran
,
S.
,
Russo
,
J. M.
,
Wu
,
Y.
,
Gordon
,
M.
, and
Kostuk
,
R.
,
2015
, “
Holographic Diffraction-Through-Aperture Spectrum Splitting for Increased Hybrid Solar Energy Conversion Efficiency
,”
Int. J. Energy Res.
,
39
(
3
), pp.
326
335
.
29.
Kandilli
,
C.
,
2013
, “
Performance Analysis of a Novel Concentrating Photovoltaic Combined System
,”
Energy Convers. Manage.
,
67
, pp.
186
196
.
30.
Bayrak
,
F.
,
Ertürk
,
G.
, and
Oztop
,
H. F.
,
2017
, “
Effects of Partial Shading on Energy and Exergy Efficiencies for Photovoltaic Panels
,”
J. Clean. Prod.
,
164
, pp.
58
69
.
31.
Xu
,
Z.
, and
Kleinstreuer
,
C.
,
2014
, “
Concentration Photovoltaic—Thermal Energy Co-Generation System Using Nanofluids for Cooling and Heating
,”
Energy Convers. Manage.
,
87
, pp.
504
512
.
32.
Blanco
,
M. J.
, and
Miller
,
S.
,
2017
, “
Introduction to Concentrating Solar Thermal (CST) Technologies
,”
Advances in Concentrating Solar Thermal Research and Technology
, 2nd ed.,
Elsevier Ltd.
,
UK
.
33.
Araki
,
K.
,
Uozumi
,
H.
,
Egami
,
T.
,
Hiramatsu
,
M.
,
Miyazaki
,
Y.
,
Kemmoku
,
Y.
,
Akisawa
,
A.
,
Ekins-Daukes
,
N. J.
,
Lee
,
H. S.
, and
Yamaguchi
,
M.
,
2005
, “
Development of Concentrator Modules With Dome-Shaped Fresnel Lenses and Triple-Junction Concentrator Cells
,”
Prog. Photovoltaic: Res. Appl.
,
13
(
6
), pp.
513
527
.
34.
Lovegrove
,
K.
, and
Stein
,
W.
,
2012
, “
Introduction to Concentrating Solar Power (CSP) Technology
,”
Concentrating Solar Power Technology Principles, Developments and Applications
,
Elsevier
,
Maryland Heights, MO
, pp.
3
15
.
35.
Kotze
,
J. P.
,
von. Backstro
,
T. W.
, and
Erens
,
P. J.
,
2013
, “
High Temperature Thermal Energy Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
035001
.
36.
Soni
,
V. K.
,
Shrivastava
,
R. L.
,
Untawale
,
S. P.
, and
Shrivastava
,
K.
,
2018
, “
Performance Analysis and Optimization of Fresnel Lens Concentrated Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031010
.
You do not currently have access to this content.