The concentration ratio of the parabolic dish solar collector (PDSC) is considered to be one of the highest among the concentrated solar power technologies (CSPs); therefore, such system is capable of generating more heat rate. The present paper focuses on the integration of the PDSC with the combined cycle (gas cycle as the toping cycle and steam cycle as the bottoming cycle) along with the utilization of waste heat from the power cycle to drive the single effect lithium bromide/water absorption cycle. Molten salt is used as a heat transfer fluid in the solar collector. The engineering equation solver (EES) is employed for the mathematical modeling and simulation of the solar integrated system. The various operating parameters (beam radiation, inlet and ambient temperatures of heat transfer fluid, mass flow rate of heat transfer fluid, evaporator temperature, and generator temperature) are varied to analyze their influence on the performance parameters (power output, overall energetic and exergetic efficiencies, outlet temperature of the receiver, and as coefficient of performance (COP) and exergy efficiencies) of the integrated system. The results show that the overall energy and exergy efficiencies are observed to be 39.9% and 42.95% at ambient temperature of 27 °C and solar irradiance of 1000 W/m2. The outlet temperature of the receiver is noticed to decrease from 1008 K to 528 K for an increase in the mass flow rate from 0.01 to 0.05 kg/s. The efficiency rate of the power plant is 38%, whereas COP of single effect absorption system is 0.84, and it will decrease from 0.87 to 0.79. However, the evaporator load is decreased to approximately 9.7% by increasing the generator temperature from 47 °C to 107 °C.

References

References
1.
Kassem
,
A.
,
Al-Haddad
,
K.
,
Komljenovic
,
D.
, and
Schiffauerova
,
A.
,
2016
, “
A Value Tree for Identification of Evaluation Criteria for Solar Thermal Power Technologies in Developing Countries
,”
Sustainable Energy Technol. Assess.
,
16
, pp.
18
32
.
2.
Adibhatla
,
S.
, and
Kaushik
,
S. C.
,
2017
, “
Energy, Exergy, Economic and Environmental (4E) Analyses of a Conceptual Solar Aided Coal Fired 500 MWe Thermal Power Plant With Thermal Energy Storage Option
,”
Sustainable Energy Technol. Assess.
,
21
, pp.
89
99
.
3.
Bellos
,
E.
,
Korres
,
D.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2016
, “
Design, Simulation and Optimization of a Compound Parabolic Collector
,”
Sustainable Energy Technol. Assess.
,
16
, pp.
53
63
.
4.
IRENA
,
2012
,
Renewable Power Generation Costs in 2012: An Overview
,
United Arab Emirates
,
Abu Dhabi
.
5.
Reddy
,
K. S.
,
Veershetty
,
G.
, and
Vikram
,
T. S.
,
2016
, “
Effect of Wind Speed and Direction on Convective Heat Losses From Solar Parabolic Dish Modified Cavity Receiver
,”
Solar Energy
,
131
, pp.
183
198
.
6.
Prado
,
G. O.
,
Vieira
,
L. G. M.
, and
Damasceno
,
J. J. R.
,
2016
, “
Solar Dish Concentrator for Desalting Water
,”
Solar Energy
,
136
, pp.
659
667
.
7.
Moradi
,
M.
, and
Mehrpooya
,
M.
,
2017
, “
Optimal Design and Economic Analysis of a Hybrid Solid Oxide Fuel Cell and Parabolic Solar Dish Collector, Combined Cooling, Heating and Power (CCHP) System Used for a Large Commercial Tower
,”
Energy
,
130
, pp.
530
543
.
8.
Loni
,
R.
,
Kasaeian
,
A. B.
,
Mahian
,
O.
, and
Sahin
,
A. Z.
,
2016
, “
Thermodynamic Analysis of an Organic Rankine Cycle Using a Tubular Solar Cavity Receiver
,”
Energy Convers. Manage.
,
127
, pp.
494
503
.
9.
Hafez
,
A. Z.
,
Soliman
,
A.
,
El-Metwally
,
K. A.
, and
Ismail
,
I. M.
,
2016
, “
Solar Parabolic Dish Stirling Engine System Design, Simulation, and Thermal Analysis
,”
Energy Convers. Manage.
,
126
, pp.
60
75
.
10.
Abid
,
M.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2016
, “
Performance Assessment of Parabolic Dish and Parabolic Trough Solar Thermal Power Plant Using Nanofluids and Molten Salts
,”
Int. J. Energy Res.
,
40
(
4
), pp.
550
563
.
11.
Barlev
,
D.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Innovation in Concentrated Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
95
(
10
), pp.
2703
2725
.
12.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2002
, “
Thermodynamics: An Engineering Approach
,”
Sea
,
1000
, p.
8862
.
13.
Aminov
,
Z.
,
Nakagoshi
,
N.
,
Xuan
,
T. D.
,
Higashi
,
O.
, and
Alikulov
,
K.
,
2016
, “
Evaluation of the Energy Efficiency of Combined Cycle Gas Turbine. Case Study of Tashkent Thermal Power Plant, Uzbekistan
,”
Appl. Therm. Eng.
,
103
, pp.
501
509
.
14.
Ullvius
,
N. C.
, and
Rokni
,
M.
,
2018
, “
A Study on a Polygeneration Plant Based on Solar Power and Solid Oxide Cells
,”
Int. J. Hydrogen Energy
(in press).
15.
Hogerwaard
,
J.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2017
, “
Solar Energy Based Integrated System for Power Generation, Refrigeration and Desalination
,”
Appl. Therm. Eng.
,
121
, pp.
1059
1069
.
16.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
17.
Ataer
,
Ö. E.
, and
Göǧüs
,
Y.
,
1991
, “
Comparative Study of Irreversibilities in an Aqua-Ammonia Absorption Refrigeration System
,”
Int. J. Refrig.
,
14
(
2
), pp.
86
92
.
18.
Seraj
,
M.
, and
Siddiqui
,
M. A.
,
2013
, “
Performance Analysis of Parallel Flow Single and Double Effect Absorption Cycles
,”
Int. J. Innov. Res. Sci. Eng. Technol.
,
2
, pp.
1570
1576
.
19.
Aprhornratana
,
S.
, and
Eames
,
I. W.
,
1995
, “
Thermodynamic Analysis of Absorption Refrigeration Cycles Using the Second Law of Thermodynamics Method
,”
Int. J. Refrig.
,
18
(
4
), pp.
244
252
.
20.
Talbi
,
M. M.
, and
Agnew
,
B.
,
2000
, “
Exergy Analysis: An Absorption Refrigerator Using Lithium Bromide and Water as the Working Fluids
,”
Appl. Therm. Eng.
,
20
(
7
), pp.
619
630
.
21.
Kilic
,
M.
, and
Kaynakli
,
O.
,
2007
, “
Second Law-Based Thermodynamic Analysis of Water-Lithium Bromide Absorption Refrigeration System
,”
Energy
,
32
(
8
), pp.
1505
1512
.
22.
Best
,
R.
,
Islas
,
J.
, and
Martinez
,
M.
,
1993
, “
Exergy Efficiency of an Ammonia-Water Absorption System for Ice Production
,”
Appl. Energy
,
45
(
3
), pp.
241
256
.
23.
Koehler
,
W. J.
,
Ibele
,
W. E.
,
Soltes
,
J.
, and
Winter
,
E. R.
,
1988
, “
Availability Simulation of a Lithium Bromide Absorption Heat Pump
,”
Heat Recov. Syst. CHP
,
8
(
2
), pp.
157
171
.
24.
Şencan
,
A.
,
Yakut
,
K. A.
, and
Kalogirou
,
S. A.
,
2005
, “
Exergy Analysis of Lithium Bromide/Water Absorption Systems
,”
Renew. Energy
,
30
(
5
), pp.
645
657
.
25.
Kumar
,
N. S.
, and
Reddy
,
K. S.
,
2008
, “
Comparison of Receivers for Solar Dish Collector System
,”
Energy Convers. Manage.
,
49
(
4
), pp.
812
819
.
26.
Ngo
,
L. C.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2012
, “
Exergetic Analysis and Optimisation of a Parabolic Dish Collector for Low Power Application
,”
Proceedings of the Postgraduate Symposium 2012
,
Stellenbosch, South Africa
,
Nov. 22–23
.
Centre for Renewable and Sustainable Energy Studies (CRSES)
.
27.
Khan
,
M. S.
,
Abid
,
M.
,
Ali
,
H. M.
,
Amber
,
K. P.
,
Bashir
,
M. A.
, and
Javed
,
S.
,
2019
, “
Comparative Performance Assessment of Solar Dish Assisted s-CO2 Brayton Cycle Using Nanofluids
,”
Appl. Therm. Eng.
,
148
, pp.
295
306
.
28.
Klein
,
S. A.
,
2009
,
Engineering Equation Solver, v8.411
,
F-Chart Software
,
Madison, Wisconsin
.
29.
Abid
,
M.
,
Ratlamwala
,
T. A.
, and
Atikol
,
U.
,
2017
, “
Solar Assisted Multi-Generation System Using Nanofluids: A Comparative Analysis
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21429
21442
.
30.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
New York/London/Orlando
.
31.
Feuermann
,
D.
, and
Gordon
,
J. M.
,
2001
, “
High-Concentration Photovoltaic Designs Based on Miniature Parabolic Dishes
,”
Solar Energy
,
70
(
5
), pp.
423
430
.
32.
Suzuki
,
A.
,
1988
, “
General Theory of Exergy-Balance Analysis and Application to Solar Collectors
,”
Energy
,
13
(
2
), pp.
153
160
.
33.
Bellos
,
J.
,
Gheewala
,
S. H.
,
Mui
,
A.
,
Smead
,
M.
, and
Chirarattananom
,
S.
,
2014
, “
The Life Cycle Assessment of a Solar Parabolic Trough by Using Nano Fluids and Converging-Diverging Absorber Tube
,”
Renew. Energy
,
94
, pp.
213
222
.
34.
Pavlovic
,
S.
,
Bellos
,
E.
,
Le Roux
,
W. G.
,
Stefanovic
,
V.
, and
Tzivanidis
,
C.
,
(2017)
, “
Experimental Investigation and Parametric Analysis of a Solar Thermal Dish Collector With Spiral Absorber
,”
Appl. Therm. Eng.
,
121
, pp.
126
135
.
35.
Gebreslassie
,
B. H.
,
Medrano
,
M.
, and
Boer
,
D.
,
2010
, “
Exergy Analysis of Multi-Effect Water–LiBr Absorption Systems: From Half to Triple Effect
,”
Renew. Energy
,
35
(
8
), pp.
1773
1782
.
36.
Sheykhlou
,
H.
, and
Jafarmadar
,
S.
,
2016
, “
Analysis of a Combined Power and Ejector–Refrigeration Cycle Based on Solar Energy
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
40
(
1
), pp.
57
67
.
37.
Khan
,
M. S.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2019
, “
Energy, Exergy and Economic Feasibility Analyses of a 60 MW Conventional Steam Power Plant Integrated With Parabolic Trough Solar Collectors Using Nanofluids
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
Suppl 1.
), pp.
193
209
.
38.
Parham
,
K.
,
Alimoradiyan
,
H.
, and
Assadi
,
M.
,
2017
, “
Energy, Exergy and Environmental Analysis of a Novel Combined System Producing Power, Water and Hydrogen
,”
Energy
,
134
, pp.
882
892
.
39.
Gomri
,
R.
,
2009
, “
Second Law Comparison of Single Effect and Double Effect Vapour Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1279
1287
.
You do not currently have access to this content.