In the present work, an effort is carried out to enhance the distillate yield of a single-slope basin-type solar still by increasing the heat input through its transparent walls and providing hanging wicks to increase the evaporation–condensation rates. A modified basin-type single-slope multi-wick solar still (MBSSMWSS) was proposed and fabricated to increase the productivity and improve the low efficiency of the recently designed modified basin-type single-slope solar still (MBSSSS). Experiments were conducted on both the solar stills to assess their performance, productivity, and efficiency (thermal and exergy) for the same basin area and water depth for the climatic condition of Prayagraj, Uttar Pradesh (U.P.), India. Results showed that the productivity, overall energy (thermal) efficiency, and maximum values of measured instantaneous exergy efficiency of the MBSSSS and MBSSMWSS systems were found to be 3.2 l/m2 day and 4.22 l/m2 day, 18.16% and 26.89%, and 4.28% and 5.31%, respectively. Furthermore, thermal modeling was also done using the energy balance equations, and then, a theoretical analysis was carried out to validate with the respective experimental observations. A good agreement was found between experimental and theoretical results. Finally, based on the results of the evaluation parameters and comparative analysis, the modified solar still with wick was found to be a better system compared with that of the system without wick and might be a good option as a solar desalination system.

References

References
1.
WWAP (World Water Assessment Programme)
,
2012
, “
The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk
,”
UNESCO
,
Paris
.
2.
Ibrahim
,
A. G. M.
,
Rashad
,
A. M.
, and
Dincer
,
I.
,
2017
, “
Exergoeconomic Analysis for Cost Optimization of a Solar Distillation System
,”
Sol. Energy
,
151
, pp.
22
32
.
3.
Lattemann
,
S.
,
2010
,
Development of an Environmental Impact Assessment and Decision Support System for Seawater Desalination Plants
,
CRC Press
,
London
.
4.
Tiwari
,
G. N.
,
2013
,
Solar Energy, Fundamentals, Design, Modeling and Application
,
Narosa Publishing House
,
New Delhi, India
.
5.
Tiwari
,
G. N.
, and
Tiwari
,
A.
,
2007
,
Solar Distillation Practice for Water Desalination Systems
,
Anamaya Publications
,
New Delhi, India
.
6.
Kalbasi
,
R.
,
Alemrajabi
,
A. A.
, and
Afrand
,
M.
,
2018
, “
Thermal Modeling and Analysis of Single and Double Effect Solar Stills: An Experimental Validation
,”
Appl. Therm. Eng.
,
129
, pp.
1455
1465
.
7.
Al-Karaghouli
,
A. A.
, and
Alnaser
,
W. E.
,
2004
, “
Performances of Single and Double Basin Solar-Stills
,”
Appl. Energy
,
78
(
3
), pp.
347
354
.
8.
Abakr
,
Y. A.
, and
Ismail
,
A. F.
,
2005
, “
Theoretical and Experimental Investigation of a Novel Multistage Evacuated Solar Still
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
381
385
.
9.
Sahota
,
L.
,
Gupta
,
V. S.
, and
Tiwari
,
G. N.
,
2018
, “
Analytical Study of Thermo-Physical Performance of Nanofluid Loaded Hybrid Double Slope Solar Still
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112404
.
10.
Akash
,
B. A.
,
Mohsen
,
M. S.
,
Osta
,
O.
, and
Elayan
,
Y.
,
1998
, “
Experimental Evaluation of a Single-Basin Solar Still Using Different Absorbing Materials
,”
Renew. Energy
,
14
(
1–4
), pp.
307
310
.
11.
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
, and
El-Bialy
,
E.
,
2000
, “
Single Basin Solar Still With Baffle Suspended Absorber
,”
Energy Convers. Manage.,
41
(
7
), pp.
661
675
.
12.
Velmurugan
,
V.
,
Gopalakrishnan
,
M.
,
Raghu
,
R.
, and
Srithar
,
K.
,
2008
, “
Single Basin Solar Still With Fin for Enhancing Productivity
,”
Energy Convers. Manage.,
49
(
10
), pp.
2602
2608
.
13.
Velmurugan
,
V.
,
Deenadayalan
,
C.
,
Vinod
,
H.
, and
Srithar
,
K.
,
2008
, “
Desalination of Effluent Using Fin Type Solar Still
,”
Energy
,
33
(
11
), pp.
1719
1727
.
14.
Dev
,
R.
,
Abdul-Wahab
,
S. A.
, and
Tiwari
,
G. N.
,
2011
, “
Performance Study of the Inverted Absorber Solar Still With Water Depth and Total Dissolved Solid
,”
Appl. Energy
,
88
(
1
), pp.
252
264
.
15.
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2012
, “
Experimental Study of a Novel Portable Solar Still by Utilizing the Heatpipe and Thermoelectric Module
,”
Desalination
,
284
, pp.
55
61
.
16.
Rahbar
,
N.
,
Esfahani
,
J. A.
, and
Asadi
,
A.
,
2016
, “
An Experimental Investigation on Productivity and Performance of a New Improved Design Portable Asymmetrical Solar Still Utilizing Thermoelectric Modules
,”
Energy Convers. Manage.
,
118
, pp.
55
62
.
17.
Estahbanati
,
M. R. K.
,
Ahsan
,
A.
,
Feilizadeh
,
M.
,
Jafarpur
,
K.
,
Ashrafmansouri
,
S. S.
, and
Feilizadeh
,
M.
,
2016
, “
Theoretical and Experimental Investigation on Internal Reflectors in a Single-Slope Solar Still
,”
Appl. Energy
,
165
, pp.
537
547
.
18.
Arunkumar
,
T.
,
Denkenberger
,
D.
,
Ahsan
,
A.
, and
Jayaprakash
,
R.
,
2013
, “
The Augmentation of Distillate Yield by Using Concentrator Coupled Solar Still With Phase Change Material
,”
Desalination
,
314
, pp.
189
192
.
19.
El-Sebaii
,
A. A.
,
Al-Ghamdi
,
A. A.
,
Al-Hazmi
,
F. S.
, and
Faidah
,
A. S.
,
2009
, “
Thermal Performance of a Single Basin Solar Still With PCM as a Storage Medium
,”
Appl. Energy
,
86
(
7–8
), pp.
1187
1195
.
20.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Mahgoub
,
M.
,
2016
, “
The Performance of a Modified Solar Still Using Hot Air Injection and PCM
,”
Desalination
,
379
, pp.
102
107
.
21.
Murugavel
,
K. K.
,
Sivakumar
,
S.
,
Ahamed
,
J. R.
,
Chockalingam
,
Kn. K. S. K.
, and
Srithar
,
K.
,
2010
, “
Single Basin Double Slope Solar Still With Minimum Basin Depth and Energy Storing Materials
,”
Appl. Energy
,
87
(
2
), pp.
514
523
.
22.
Rajaseenivasan
,
T.
,
Tinnokesh
,
A. P.
,
Kumar
,
G. R.
, and
Srithar
,
K.
,
2016
, “
Glass Basin Solar Still With Integrated Preheated Water Supply—Theoretical and Experimental Investigation
,”
Desalination
,
398
, pp.
214
221
.
23.
Naim
,
M. M.
, and
Abd El Kawi
,
M. A.
,
2002
, “
Non-Conventional Solar Stills Part 2. Non-Conventional Solar Stills With Energy Storage Element
,”
Desalination
,
153
(
1–3
), pp.
71
80
.
24.
Sathyamurthy
,
R.
,
Kennady
,
H. J.
,
Nagarajan
,
P. K.
, and
Ahsan
,
A.
,
2014
, “
Factors Affecting the Performance of Triangular Pyramid Solar Still
,”
Desalination
,
344
, pp.
383
390
.
25.
Gad
,
H. E.
,
El-Din
,
S. S.
,
Hussien
,
A. A.
, and
Ramzy
,
K.
,
2015
, “
Analysis of a Conical Solar Still Performance: An Experimental Study
,”
Sol. Energy
,
122
, pp.
900
909
.
26.
Arunkumar
,
T.
,
Jayaprakash
,
R.
,
Denkenberger
,
D.
,
Ahsan
,
A.
,
Okundamiya
,
M. S.
,
Kumar
,
S.
,
Tanaka
,
H.
, and
Aybar
,
H. S.
,
2012
, “
An Experimental Study on a Hemispherical Solar Still
,”
Desalination
,
286
, pp.
342
348
.
27.
Farshad
,
F. T.
,
Dashtban
,
M.
, and
Hamid
,
M.
,
2010
, “
Experimental Investigation of a Weir-Type Cascade Solar Still With Built-in Latent Heat Energy Storage System
,”
Desalination
,
260
(
1–3
), pp.
248
253
.
28.
Rashidi
,
S.
,
Akar
,
S.
,
Bovand
,
M.
, and
Ellahi
,
R.
,
2018
, “
Volume of Fluid Model to Simulate the Nanofluid Flow and Entropy Generation in a Single Slope Solar Still
,”
Renew. Energy
,
115
, pp.
400
410
.
29.
Rabhi
,
K.
,
Nciri
,
R.
,
Nasri
,
F.
,
Ali
,
C.
, and
Bacha
,
H. B.
,
2017
, “
Experimental Performance Analysis of a Modified Single–Basin Single–Slope Solar Still With Pin Fins Absorber and Condenser
,”
Desalination
,
416
, pp.
86
93
.
30.
Muftah
,
A. F.
,
Sopian
,
K.
, and
Alghoul
,
M. A.
,
2018
, “
Performance of Basin Type Stepped Solar Still Enhanced With Superior Design Concepts
,”
Desalination
,
435
, pp.
198
209
.
31.
Jamil
,
B.
, and
Akhtar
,
N.
,
2017
, “
Effect of Specific Height on the Performance of a Single Slope Solar Still: An Experimental Study
,”
Desalination
,
414
, pp.
73
88
.
32.
Pakdel
,
M. A.
,
Hedayatizadeh
,
M.
,
Tabatabaei
,
S. M.
, and
Niknia
,
N.
,
2017
, “
An Experimental Study of a Single-Slope Solar Still With Innovative Side–Troughs Under Natural Circulation Mode
,”
Desalination
,
422
, pp.
174
181
.
33.
Abed
,
F. M.
,
2018
, “
Design and Fabrication of a Multistage Solar Still With Three Focal Concentric Collectors
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041003
.
34.
Al-Garni
,
A. Z.
,
2012
, “
Productivity Enhancement of Solar Still Using Water Heater and Cooling Fan
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031006
.
35.
Dev
,
R.
, and
Tiwari
,
G. N.
,
2009
, “
Characteristic Equation of a Passive Solar Still
,”
Desalination
,
245
(
1–3
), pp.
246
265
.
36.
Dwivedi
,
V. K.
, and
Tiwari
,
G. N.
,
2009
, “
Comparison of Internal Heat Transfer Coefficients in Passive Solar Stills by Different Thermal Models: An Experimental Validation
,”
Desalination
,
246
(
1–3
), pp.
304
318
.
37.
Sodha
,
M. S.
,
Kumar
,
A.
,
Tiwari
,
G. N.
, and
Tyagi
,
R. C.
,
1981
, “
Simple Multiple Wick Solar Still Analysis and Performance
,”
Sol. Energy
,
26
(
2
), pp.
127
131
.
38.
Yeh
,
H. M.
, and
Chen
,
L. C.
,
1986
, “
The Effects of Climatic, Design and Operational Parameters on the Performance of Wick-Type Solar Distillers
,”
Energy Convers. Manage.
,
26
(
2
), pp.
175
180
.
39.
Minasian
,
A. N.
, and
Al-Karaghouli
,
A. A.
,
1995
, “
An Improved Solar Still: The Wick–Basin Type
,”
Energy Convers. Manage.
,
36
(
3
), pp.
213
217
.
40.
Haddad
,
Z.
,
Chaker
,
A.
, and
Rahmani
,
A.
,
2017
, “
Improving the Basin Type Solar Still Performances Using a Vertical Rotating Wick
,”
Desalination
,
418
, pp.
71
78
.
41.
Sharon
,
H.
,
Reddy
,
K. S.
,
Krithika
,
D.
, and
Philip
,
L.
,
2017
, “
Experimental Performance Investigation of Tilted Solar Still With Basin and Wick for Distillate Quality and Enviro-Economic Aspects
,”
Desalination
,
410
, pp.
30
54
.
42.
Pal
,
P.
,
Yadav
,
P.
,
Dev
,
R.
, and
Singh
,
D.
,
2017
, “
Performance Analysis of Modified Basin Type Double Slope Multi-Wick Solar Still
,”
Desalination
,
422
, pp.
68
82
.
43.
Pal
,
P.
,
Dev
,
R.
,
Singh
,
D.
, and
Ahsan
,
A.
,
2018
, “
Energy Matrices, Exergoeconomic and Enviroeconomic Analysis of Modified Multi-Wick Basin Type Double Slope Solar Still
,”
Desalination
,
447
, pp.
55
73
.
44.
Kaviti
,
A. K.
,
Yadav
,
A.
, and
Shukla
,
A.
,
2016
, “
Inclined Solar Still Designs: A Review
,”
Renew. Sustain. Energy Rev.
,
54
, pp.
429
451
.
45.
Manikandan
,
V.
,
Shanmugasundaram
,
K.
,
Shanmugan
,
S.
,
Janarthanan
,
B.
, and
Chandrasekaran
,
J.
,
2013
, “
Wick Type Solar Stills: A Review
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
322
335
.
46.
Kumar
,
P. V.
,
Kumar
,
A.
,
Prakash
,
O.
, and
Kaviti
,
A. K.
,
2015
, “
Solar Stills System Design: A Review
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
153
181
.
47.
Abdullah
,
A. S.
,
Essa
,
F. A.
, and
Omara
,
Z. M.
,
2018
, “
Effect of Different Wick Materials on Solar Still Performance—A Review
,”
Int. J. Ambient Energy
, pp.
1
28
.
48.
Pal
,
P.
, and
Dev
,
R.
,
2018
, “
Performance Study of Modified Basin-Type Single-Slope Solar Distiller
,”
Euro Mediterr J Environ Integr
,
3:37
(
1
), pp.
1
8
.
49.
Tiwari
,
G. N.
,
Dimri
,
V.
, and
Chel
,
A.
,
2009
, “
Parametric Study of an Active and Passive Solar Distillation System: Energy and Exergy Analysis
,”
Desalination
,
242
(
1–3
), pp.
1
18
.
50.
Akpinar
,
E. K.
,
2010
, “
Drying of Mint Leaves in a Solar Dryer and Under Open Sun: Modelling, Performance Analyses
,”
Energy Convers. Manage.,
51
(
12
), pp.
2407
2418
.
51.
Dev
,
R.
,
2012
, “
Thermal Modeling and Characteristic Equations for Passive and Active Solar Stills
,”
Ph.D. thesis
,
Centre for Energy Studies, IIT Delhi
,
India
.
52.
Chel
,
A.
, and
Tiwari
,
G. N.
,
2009
, “
Thermal Performance and Embodied Energy Analysis of a Passive House-Case Study of Vault Roof Mud-House in India
,”
Appl. Energy
,
86
(
10
), pp.
1956
1969
.
You do not currently have access to this content.