The present study aims to develop a compact experimental facility to trap solar energy. Line focusing concentrators, i.e., Fresnel lens and secondary reflectors, are coupled to enhance the photothermal conversion efficiency. Two types of receiver tubes are used, a plain copper tube and an evacuated glass tube embedded with a copper tube. Surfactant-free multiwalled carbon nanotubes–Therminol55 nanofluid with concentrations of 25, 50, 75, and 100 ppm are used in this study. The characterization of the nanoparticles and nanofluids is presented. In the visible range, a maximum absorbance and extinction coefficient of 0.75 and 1.7 cm−1 are obtained for 100 ppm concentration. The thermal conductivity is also enhanced by 6.29% compared to base fluid. A maximum fluid temperature of 78.15 and 89.58 °C is observed for plain receiver tube and receiver tube in evacuated space, respectively, and the corresponding efficiencies are 12.65 and 17.36%

References

1.
Said
,
Z.
,
Saidur
,
R.
,
Sabiha
,
M. A.
,
Rahim
,
N. A.
, and
Anisur
,
M. R.
,
2015
, “
Thermophysical Properties of Single Wall Carbon Nanotubes and Its Effect on Exergy Efficiency of a Flat Plate Solar Collector
,”
Sol. Energy
,
115
, pp.
757
769
.
2.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids Using Different Types of Carbon Nanotubes
,”
Int. J. Heat Mass Transf.
,
88
, pp.
609
616
.
3.
Garg
,
P.
,
Alvarado
,
J. L.
,
Marsh
,
C.
,
Carlson
,
T. A.
, and
Kessler
,
D. A.
,
2009
, “
An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids
,”
Int. J. Heat Mass Transf.
,
52
(
21–22
), pp.
5090
5101
.
4.
Chen
,
M.
,
He
,
Y.
,
Huang
,
J.
, and
Zhu
,
J.
,
2017
, “
Investigation Into Au Nanofluids for Solar Photothermal Conversion
,”
Int. J. Heat Mass Transf.
,
108
, pp.
1894
1900
.
5.
Chen
,
M.
,
He
,
Y.
,
Huang
,
J.
, and
Zhu
,
J.
,
2016
, “
Synthesis and Solar Photo-Thermal Conversion of Au, Ag, and Au-Ag Blended Plasmonic Nanoparticles
,”
Energy Convers. Manag.
,
127
, pp.
293
300
.
6.
Khosrojerdi
,
S.
,
Lavasani
,
A. M.
, and
Vakili
,
M.
,
2017
, “
Experimental Study of Photothermal Specifications and Stability of Graphene Oxide Nanoplatelets Nano Fluid as Working Fluid for Low-Temperature Direct Absorption Solar Collectors (DASCs)
,”
Sol. Energy Mater. Sol. Cells
,
164
, pp.
32
39
.
7.
Rose
,
B. A. J.
,
Singh
,
H.
,
Verma
,
N.
,
Tassou
,
S.
,
Suresh
,
S.
,
Anantharaman
,
N.
,
Mariotti
,
D.
, and
Maguirec
,
P.
,
2017
, “
Investigations Into Nanofluids as Direct Solar Radiation Collectors
,”
Sol. Energy
,
147
, pp.
426
431
.
8.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Thermo-Physical Properties of Water-Based Single-Walled Carbon Nanotube Nano fluid as Advanced Coolant
,”
Appl. Therm. Eng.
,
87
, pp.
344
351
.
9.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
10.
Qu
,
J.
,
Tian
,
M.
,
Han
,
X.
,
Zhang
,
R.
, and
Wang
,
Q.
,
2017
, “
Photo-Thermal Conversion Characteristics of MWCNT-H2O Nanofluids for Direct Solar Thermal Energy Absorption Applications
,”
Appl. Therm. Eng.
,
124
, pp.
486
493
.
11.
Hordy
,
N.
,
Rabilloud
,
D.
,
Meunier
,
J.
, and
Coulombe
,
S.
,
2014
, “
High Temperature and Long-Term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors
,”
Sol. Energy
,
105
, pp.
82
90
.
12.
Elton
,
D. N.
, and
Arunachala
,
U. C.
,
2018
, “
Parabolic Trough Solar Collector for Medium Temperature Applications: An Experimental Analysis of the Efficiency and Length Optimization by Using Inserts
,”
ASME J. Sol. Energy Eng.
,
140
, p.
061012
.
13.
Freedman
,
J. P.
,
Wang
,
H.
, and
Prasher
,
R. S.
,
2018
, “
Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications
,”
ASME J. Sol. Energy Eng.
,
140
, p.
051008
.
14.
Chen
,
J.
,
Xu
,
H. T.
,
Wang
,
Z. Y.
, and
Han
,
S. P.
,
2018
, “
Thermal Performance Study of a Water Tank for a Solar System With a Fresnel Lens
,”
ASME J. Sol. Energy Eng.
,
140
, p.
051005
.
15.
Li
,
Z.
,
Ma
,
X.
,
Zhao
,
Y.
, and
Zheng
,
H.
,
2019
, “
Study on the Performance of a Curved Fresnel Solar Concentrated System With Seasonal Underground Heat Storage for the Greenhouse Application
,”
ASME J. Sol. Energy Eng.
,
141
, p.
011004
.
16.
Harding
,
G. L.
,
Zhiqiang
,
Y.
, and
Mackey
,
D. W.
,
1985
, “
Heat Extraction Efficiency of a Concentric Glass Tubular Evacuated Collector
,”
Sol. Energy
,
35
(
1
), pp.
71
79
.
17.
Kim
,
Y.
, and
Seo
,
T.
,
2007
, “
Thermal Performances Comparisons of the Glass Evacuated Tube Solar Collectors With Shapes of Absorber Tube
,”
Renew. Energy
,
32
(
9
), pp.
772
795
.
18.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
.
19.
Abdel-Rehim
,
Z. S.
, and
Lasheen
,
A.
,
2007
, “
Experimental and Theoretical Study of a Solar Desalination System Located in Cairo, Egypt
,”
Desalination
,
217
(
1–3
), pp.
52
64
.
20.
Praveen
,
B.
, and
Suresh
,
S.
,
2018
, “
Experimental Study on Heat Transfer Performance of Neopentyl Glycol/CuO Composite Solid-Solid PCM in TES Based Heat Sink
,”
Eng. Sci. Technol. Int. J.
,
21
(
5
), pp.
1086
1094
.
21.
Yagnem
,
A. R.
, and
Venkatachalapathy
,
S.
,
2019
, “
Heat Transfer Enhancement Studies in Pool Boiling Using Hybrid Nanofluids
,”
Thermochim. Acta
,
672
, pp.
93
100
.
You do not currently have access to this content.