A comprehensive aero-hydro-structural analysis is conducted for a 5 MW offshore wind turbine system in this study. Soil–structure interaction under complex aero-hydro loading is analyzed to provide a suitable foundation design with high safety. With consideration of the wind turbine size and water depth, the monopile foundation design by the National Renewable Energy Laboratory (NREL) is selected in the current study. Both aerodynamic loading for the 5 MW wind turbine rotor defined by NREL and hydrodynamic loading on the foundation are simulated under different flow conditions using high-fidelity computational fluid dynamics methods. Structural dynamic analysis is then carried out to estimate the stress field in the foundation and soil. Results from the comprehensive analysis indicate that the Morison equation is conservative when looking at the stress field in the monopile foundation and underestimates the stress field in soil. A similar analysis strategy can be applied to other types of foundations such as jacket foundations and lead to more economical and reliable designs of foundations.

References

1.
Musial
,
W.
, and
Butterfield
,
S.
,
2004
, “
Future for Offshore Wind Energy in the United States: Preprint
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/CP-500-36313.
2.
Musial
,
W.
, and
Ram
,
B.
,
2010
, “
Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-500-40745.
3.
Musial
,
W.
,
Butterfield
,
S.
, and
Ram
,
B.
,
2006
, “
Energy From Offshore Wind
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/CP-500-39450.
4.
2011
, “
A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States
,”
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Water Power Program; U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation, and Enforcement
.
5.
Sheng
,
S.
,
2013
, “
Report on Wind Turbine Subsystem Reliability—A Survey of Various Databases
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/PR-5000-59111.
6.
Malhotra
,
S.
,
2011
, “
Selection, Design and Construction of Offshore Wind Turbine Foundations
,”
Wind Turbines
,
I.
Al-Bahadly
, ed.,
InTech
,
London
, pp.
231
264
.
7.
Leishman
,
J. G.
,
2000
,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
,
New York, NY
.
8.
Peters
,
D. A.
, and
He
,
C. J.
,
1991
, “
Correlation of Measured Induced Velocities With a Finite-State Wake Model
,”
J. Am. Helicopter Soc.
,
36
(
3
), pp.
59
70
.
9.
Quarton
,
D. C.
,
1998
, “
The Evolution of Wind Turbine Design Analysis—A Twenty Year Progress Review
,”
Wind Energy
,
1
(
S1
), pp.
5
24
.
10.
Passon
,
P.
,
2005
, “
State-of-the-Art and Development Needs of Simulation Codes for Offshore Wind
,”
Copenhagen Offshore Wind Energy Conference
,
Copenhagen, Denmark
.
11.
Butterfield
,
C.
,
Musial
,
W.
, and
Jonkman
,
J.
,
2007
, “
Overview of Offshore Wind Technology: Preprint
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/CP-500-42252.
12.
Damiani
,
R.
,
Jonkman
,
J.
,
Robertson
,
A.
, and
Song
,
H.
,
2013
, “
Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST
,”
The 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
.
13.
Leishman
,
J. G.
,
2002
, “
Challenges in Modeling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
,
5
(
2–3
), pp.
85
132
.
14.
Vermeer
,
L. J.
,
Sørensen
,
J.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6
), pp.
467
510
.
15.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
6
), pp.
285
330
.
16.
Smith
,
S.
,
Syed
,
A.-B.
,
Liu
,
K.
,
Chen
,
D.
,
Yu
,
M. L.
,
Zhu
,
W.
,
Liu
,
R.
, and
Aggour
,
M. S.
,
2016
, “
A Comprehensive Aero-Hydro-Structural Analysis of a 5-MW Offshore Wind Turbine System: Towards Cost-Effective Deployment of Offshore Wind Turbines in Maryland
,”
The AIAA Science and Technology Forum and Exposition 2016
, Paper No. AIAA-2016-1993,
San Diego, CA
.
17.
Jonkman
,
J. M.
, and
Buhl
,
M. L. J.
,
2005
, “
FAST User’s Guide
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/EL-500-38230.
18.
Henderson
,
A. R.
,
Zaaijer
,
M. B.
, and
Camp
,
T. R.
,
2003
, “
Hydrodynamic Loading on Offshore Wind Turbines
,”
Offshore Wind Energy in Mediterranean and Other European Seas (OWEMES Conference)
,
Naples, Italy
.
19.
Chella
,
M. A.
,
Tørum
,
A.
, and
Myrhaug
,
D.
,
2012
, “
An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures
,”
Energy Procedia
,
20
, pp.
217
226
.
20.
Poulos
,
H. G.
, and
Davis
,
E. H.
,
1980
,
Pile Foundation Analysis and Design
,
Wiley
,
New York
.
21.
Cuéllar
,
P.
,
2011
,
Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behavior Under Short-Term and Long-Term Cyclic Loading
,
Berlin Institute of Technology
,
Berlin, Germany
.
22.
Broms
,
B.
,
1964
, “
Lateral Resistance of Piles in Cohesionless Soils
,”
ASCE J. Soil Mech. Found. Div.
,
90
(
3
), pp.
123
156
.
23.
Novak
,
M.
,
1974
, “
Dynamic Stiffness and Damping of Piles
,”
Can. Geotech. J.
,
11
(
4
), pp.
574
598
.
24.
Gazetas
,
G.
, and
Makris
,
N.
,
1991
, “
Dynamic Pile–Soil–Pile Interaction. Part I: Analysis of Axial Vibration
,”
Earthq. Eng. Struct. Dyn.
,
20
(
2
), pp.
115
132
.
25.
Makris
,
N.
, and
Gazetas
,
G.
,
1992
, “
Dynamic Pile–Soil–Pile Interaction. Part II: Lateral and Seismic Response
,”
Earthq. Eng. Struct. Dyn.
,
21
(
2
), pp.
145
162
.
26.
Yuan
,
M.
,
Ding
,
J. H.
, and
Zhang
,
Q.
,
2011
, “
Analysis of Spatial Effects of Two-Row Pile Structure of Foundation Pit Based on Elastic Resistance Method
,”
Int. J. Civil Environ. Eng.
,
11
, p.
134
.
27.
Chowdhury
,
I.
, and
Dasgupta
,
S. P.
,
2009
,
Dynamics of Structure and Foundation—A Unified Approach
,
CRC Press
,
New York
.
28.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Teask 23 Offshore Wind Technology and Deployment
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-5000-48191.
29.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory
,
Golden, CO
, Report No. NREL/TP-500-38060.
30.
Patel
,
M. H.
, and
Witz
,
J. A.
,
1991
,
Compliant Offshore Structures
,
Butterworth-Heinemann
,
Oxford
.
31.
Rahman
,
M. M.
,
Karim
,
M. M.
, and
Alim
,
M. A.
,
2007
, “
Numerical Investigation of Unsteady Flow Past a Circular Cylinder Using 2-D Finite Volumn Method
,”
J. Naval Arch. Mar. Eng.
,
4
(
1
), pp.
27
42
.
32.
Stokes
,
G. G.
,
1847
, “
On the Theory of Oscillatory Waves
,”
Trans. Camb. Philos. Soc.
,
8
(
1
), pp.
441
455
.
33.
Hedges
,
T.
,
1995
, “
Regions of Validity of Analytical Wave Theories
,”
ICE Proceedings Water Maritime and Energy
,
112
(
2
), pp.
111
114
.
34.
Prowell
,
I.
,
Elgamal
,
A.
, and
Lu
,
J.
,
2010
, “
Modeling the Influence of Soil Structure Interaction on the Seismic Response of a 5MW Wind Turbine
,”
Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
,
San Diego, CA
,
May 24–25
.
35.
Dai
,
K. S.
,
Chen
,
S. E.
,
Qi
,
W. Y.
,
Conner
,
E.
,
Erdle
,
J.
, and
Galloway
,
C.
,
2011
, “
Field Testing of Directly Embedded Poles
,”
Exp. Tech.
,
35
(
2
), pp.
14
23
.
36.
Králik
,
J.
, and
Králik
,
J. J.
,
2013
, “
Sensitivity Analysis of Soil-Foundation-Machine Interaction on Layered Soil
,”
11th International Conference on Vibration Problem
,
Lisbon, Portugal
,
Sept. 9–12
.
37.
Paullo
,
M. L.
,
Goncalves
,
P. B.
,
Silveira
,
R. A.
, and
Silva
,
A. R.
,
2013
, “
Nonlinear Dynamics Analysis of Frame Structures Under Seismic Excitation Considering Soil-Structure Interaction and Elasto-Plastic Soil Behavior
,”
11th International Conference on Vibration Problem
,
Lisbon, Portugal
,
Sept. 9–12
.
38.
Anandarajah
,
A.
,
2011
,
Computational Methods in Elasticity and Plasticity: Solids and Porous Media
,
Springer
,
New York
.
39.
Ahmed
,
O. S. A.
,
2015
, “
Vertical Dynamic Soil-Pile Interaction for Machine Foundations
,” Ph.D. thesis,
University of Maryland
.
40.
Wilson
,
E. L.
,
2002
,
Three Dimensional Static and Dynamic Analysis of Structures: A Physical Approach With Emphasis on Earthquake Engineering
,
Computers and Structures
,
Berkeley
.
41.
Blasio
,
F. V. D.
,
2011
,
Introduction to the Physics of Landslides: Lecture Notes on the Dynamics of Mass Wasting
,
Springer Science
,
Berlin
.
42.
Journee
,
J. M. J.
, and
Massie
,
W. W.
,
2001
,
Offshore Hydromechanics
,
Delft University of Technology
.
43.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
207
235
.
44.
Sheppard
,
D. M.
, “
Regular Ocean Waves
,” http://www.essie.ufl.edu/∼sheppard/OCE3016/Ocean%20Waves.pdf. Accessed Dec. 2, 2015.
45.
Prasad
,
S. K.
,
2013
,
Bearing Capacity of Soil
,
S.J. College of Engineering
,
Mysore
.
You do not currently have access to this content.