The performance of the photovoltaic-thermoelectric (PV-TE) hybrid system was examined using three types of PV cells and a thermoelectric generator (TEG) based on bismuth telluride. The investigated PV cells are amorphous silicon (a-Si), monocrystalline silicon (mono-Si), and cadmium telluride (CdTe). The results showed that the TEG contribution can overcome the degradation of the PV cell efficiency with increasing temperature at the minimal working condition. This condition corresponds to the critical temperature difference across the TEG that guarantees the same efficiency of the hybrid system as that of the PV cell alone at 298 K. The obtained results showed that the critical temperature difference is 13.3 K, 44.1 K, and 105 K for the a-Si, CdTe, and mono-Si PV cell, respectively. In addition, the general expression of the temperature difference across the TEG needed for an efficiency enhancement by a ratio of r compared with a PV cell alone at 298 K was given. For an efficiency enhancement by 5 % (r = 1.05), the temperature difference required is 30.2 K, 61.3 K, and 116.1 K for the a-Si, CdTe, and mono-Si PV cells, respectively. These values cannot be achieved practically only in the case of the a-Si PV cell. Moreover, a TE material with a high power factor can reduce this temperature difference and improve the performance of the hybrid system. This work provides a tool that may be useful during the selection of the PV cell and the TE material for the hybrid system.

References

1.
Shockley
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
,”
J. Appl. Phys.
,
32
(
3
), pp.
510
519
.
2.
Green
,
M. A.
,
2002
, “
Third Generation Photovoltaics: Solar Cells for 2020 and Beyond
,”
Phys. E: Low-Dimensional Syst. Nanostruct.
,
14
(
1
), pp.
65
70
.
3.
Hirst
,
L. C.
, and
Ekins-Daukes
,
N. J.
,
2011
, “
Fundamental Losses in Solar Cells
,”
Prog. Photovoltaics: Res. Appl.
,
19
(
3
), pp.
286
293
.
4.
Khelifa
,
A.
,
Touafek
,
K.
, and
Moussa
,
H. B.
,
2014
, “
Approach for the Modelling of Hybrid Photovoltaic–Thermal Solar Collector
,”
IET Renew. Power Gen.
,
9
(
3
), pp.
207
217
.
5.
Al Tarabsheh
,
A.
,
Etier
,
I.
,
Fath
,
H.
,
Ghazal
,
A.
,
Morci
,
Y.
,
Asad
,
M.
, and
El Haj
,
A.
,
2016
, “
Performance of Photovoltaic Cells in Photovoltaic Thermal (PVT) Modules
,”
IET Renewable Power Generation
,
10
(
7
), pp.
1017
1023
.
6.
Sark
,
V.
,
2011
, “
Feasibility of Photovoltaic–Thermoelectric Hybrid Modules
,”
Appl. Energy
,
88
(
8
), pp.
2785
2790
.
7.
Park
,
K.-T.
,
Shin
,
S.-M.
,
Tazebay
,
A. S.
,
Um
,
H.-D.
,
Jung
,
J.-Y.
,
Jee
,
S.-W.
,
Oh
,
M.-W.
,
Park
,
S.-D.
,
Yoo
,
B.
, and
Yu
,
C.
, et al
2013
, “
Lossless Hybridization Between Photovoltaic and Thermoelectric Devices
,”
Sci. Rep.
,
3
, pp.
2123
.
8.
Hashim
,
H.
,
Bomphrey
,
J.
, and
Min
,
G.
,
2016
, “
Model for Geometry Optimisation of Thermoelectric Devices in a Hybrid PV/TE System
,”
Renewable Energy
,
87
, pp.
458
463
.
9.
Yin
,
E.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2017
, “
One-Day Performance Evaluation of Photovoltaic-Thermoelectric Hybrid System
,”
Energy
,
143
, pp.
337
346
.
10.
Kossyvakis
,
D.
,
Voutsinas
,
G.
, and
Hristoforou
,
E.
,
2016
, “
Experimental Analysis and Performance Evaluation of a Tandem Photovoltaic–Thermoelectric Hybrid System
,”
Energy. Convers. Manage.
,
117
, pp.
490
500
.
11.
Rezania
,
A.
,
Sera
,
D.
, and
Rosendahl
,
L. A.
,
2016
, “
Coupled Thermal Model of Photovoltaic-Thermoelectric Hybrid Panel for Sample Cities in Europe
,”
Renewable Energy
,
99
, pp.
127
135
.
12.
Lorenzi
,
B.
,
Acciarri
,
M.
, and
Narducci
,
D.
,
2015
, “
Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery
,”
J. Electron. Mater.
,
44
(
6
), pp.
1809
.
13.
Lorenzi
,
B.
,
Acciarri
,
M.
, and
Narducci
,
D.
,
2015
, “
Conditions for Beneficial Coupling of Thermoelectric and Photovoltaic Devices
,”
J. Mater. Res.
,
30
(
17
), pp.
2663
2669
.
14.
Lorenzi
,
B.
,
Acciarri
,
M.
, and
Narducci
,
D.
,
2016
, “
Challenges and Perspectives in Tandem Thermoelectric–Photovoltaic Solar Energy Conversion
,”
IEEE. Trans. Nanotechnol.
,
15
(
3
), pp.
348
355
.
15.
Wu
,
Y. Y.
,
Wu
,
S.-Y.
, and
Xiao
,
L.
,
2015
, “
Performance Analysis of Photovoltaic–Thermoelectric Hybrid System With and Without Glass Cover
,”
Energy. Convers. Manage.
,
93
, pp.
151
159
.
16.
Contento
,
G.
,
Lorenzi
,
B.
,
Rizzo
,
A.
, and
Narducci
,
D.
,
2017
, “
Efficiency Enhancement of a-Si and CZTS Solar Cells Using Different Thermoelectric Hybridization Strategies
,”
Energy
,
131
, pp.
230
238
.
17.
Daghigh
,
R.
, and
Khaledian
,
Y.
,
2018
, “
A Novel Photovoltaic/Thermoelectric Collector Combined With a Dual–Evaporator Vapor Compression System
,”
Energy. Convers. Manage.
,
158
, pp.
156
167
.
18.
Zhang
,
J.
,
Xuan
,
Y.
, and
Yang
,
L.
,
2014
, “
Performance Estimation of Photovoltaic–Thermoelectric Hybrid Systems
,”
Energy
,
78
, pp.
895
903
.
19.
Bjørk
,
R.
, and
Nielsen
,
K. K.
,
2015
, “
The Performance of a Combined Solar Photovoltaic (PV) and Thermoelectric Generator (TEG) System
,”
Solar Energy
,
120
, pp.
187
194
.
20.
Li
,
D.
,
Xuan
,
Y.
,
Li
,
Q.
, and
Hong
,
H.
,
2017
, “
Exergy and Energy Analysis of Photovoltaic-Thermoelectric Hybrid Systems
,”
Energy
,
126
, pp.
343
351
.
21.
Tobias
,
I.
, and
Luque
,
A.
,
2002
, “
Ideal Efficiency and Potential of Solar Thermophotonic Converters Under Optically and Thermally Concentrated Power Flux
,”
IEEE. Trans. Electron. Devices.
,
49
(
11
), pp.
2024
2030
.
22.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
,
Warta
,
W.
, and
Dunlop
,
E. D.
,
2016
, “
Solar Cell Efficiency Tables (Version 48)
,”
Prog Photovoltaics: Res. Appl.,
24
(
7
), pp.
905
913
.
23.
Virtuani
,
A.
,
Pavanello
,
D.
, and
Friesen
,
G.
, “
Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies
,”
25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion
,
Valencia, Spain
,
Sept. 6–10, 2010
, pp.
4248
4252
.
24.
Dubey
,
S.
,
Sarvaiya
,
J. N.
, and
Seshadri
,
B.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and its Effect on PV Production in the World–A Review
,”
Energy Procedia
,
33
, pp.
311
321
.
25.
Skoplaki
,
E.
, and
Palyvos
,
J.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Solar Energy
,
83
(
5
), pp.
614
624
.
26.
Tritt
,
T. M.
,
Böttner
,
H.
, and
Chen
,
L.
,
2008
, “
Thermoelectrics: Direct Solar Thermal Energy Conversion
,”
MRS Bull.
,
33
(
4
), pp.
366
368
.
27.
Gao
,
M.
,
2013
, “
Thermoelectric Module Design Under a Given Thermal Input: Theory and Example
,”
J. Electron. Mater.
,
42
(
7
), pp.
2239
2242
.
28.
Liu
,
W.
,
Kim
,
H. S.
,
Jie
,
Q.
, and
Ren
,
Z.
,
2016
, “
Importance of High Power Factor in Thermoelectric Materials for Power Generation Application: A Perspective
,”
Scr. Mater.
,
111
, pp.
3
9
.
29.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
30.
Zondag
,
H. A.
,
de Vries
,
D. d.
,
Van Helden
,
W.
,
Van Zolingen
,
R.
, and
Van Steenhoven
,
A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Solar Energy
,
72
(
2
), pp.
113
128
.
31.
Emery
,
K.
,
Burdick
,
J.
,
Caiyem
,
Y.
,
Dunlavy
,
D.
,
Field
,
H.
,
Kroposki
,
B.
,
Moriarty
,
T.
,
Ottoson
,
L.
,
Rummel
,
S.
,
Strand
,
T.
, and
Wanless
,
M. W.
, “
Temperature Dependence of Photovoltaic Cells, Modules and Systems
,”
Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference
,
Washington, DC
,
May 13–17, 1996
, pp.
1275
1278
.
32.
Ohta
,
H.
,
Kim
,
S. W.
,
Kaneki
,
S.
,
Yamamoto
,
A.
, and
Hashizume
,
T.
,
2018
, “
High Thermoelectric Power Factor of High-Mobility 2d Electron Gas
,”
Adv. Sci.
,
5
(
1
), p.
1700696
.
You do not currently have access to this content.