This paper presents a three-dimensional numerical analysis of a flat plate solar air heater in the presence of a pin fin array using the computational fluid dynamics (CFD) software tool ansys fluent 16.2. The effect of geometric parameters of pin fins as well as the flow Reynolds number (4000–24,000) on the effective efficiency is evaluated. The longitudinal pitch (PL) of pin fin array is varied as 30 mm, 40 mm, and 50 mm and the diameter (Dw) is varied as 1.0 mm, 1.6 mm, and 2.2 mm. The results show that the presence of pin fins generate considerable enhancement in fluid turbulence as well as heat transfer area to a maximum extent of about 53.8%. The maximum average increase in instantaneous thermal efficiency is found to be about 14.2% higher as compared with the base model for the fin diameter of 2.2 mm and a longitudinal pitch value of 30 mm. In terms of effective efficiency, the pin fin array exhibits significant enhancement, especially at lower flow rate conditions. Finally, the effective efficiency of the pin fin array is compared with the previous work of authors involving spherical turbulators and sinewave corrugations on the absorber plate. The results show that the pin fin array exhibits a relatively superior effective efficiency to a maximum extent of about 73% for lower flow rate conditions.

References

References
1.
Amasyali
,
K.
, and
El-Gohary
,
N. M.
,
2018
, “
A Review of Data-Driven Building Energy Consumption Prediction Studies
,”
Renewable Sustainable Energy Rev.
,
81
(
P1
), pp.
1192
1205
.
2.
Arteaga-Lopez
,
E.
,
Angeles-Camacho
,
C.
, and
Banuelos-Ruedas
,
F.
,
2019
, “
Advanced Methodology for Feasibility Studies on Building-Mounted Wind Turbines Installation in Urban Environment: Applying CFD Analysis
,”
Energy
,
167
(
1
), pp.
181
188
.
3.
Chaudhry
,
H. N.
,
Calautit
,
J. K.
, and
Hugheet
,
B. R.
,
2014
, “
Numerical Analysis of the Integration of Wind Turbines Into the Design of the Built Environment
,”
Am. J. Eng. Appl. Sci.
,
7
(
4
), pp.
363
373
.
4.
Garnier
,
C.
,
Muneer
,
T.
, and
Currie
,
J.
,
2018
, “
Numerical and Empirical Evaluation of a Novel Building Integrated Collector Storage Solar Water Heater
,”
Renewable Energy
,
126
(
1
), pp.
281
295
.
5.
Assari
,
M. R.
,
Basirat Tabrizi
,
H.
, and
Savadkohy
,
M.
,
2018
, “
Numerical and Experimental Study of Inlet-Outlet Locations Effect in Horizontal Storage Tank of Solar Water Heater
,”
Sustainable Energy Technol. Assess.
,
25
(
1
), pp.
181
190
.
6.
Jiru
,
T. E.
, and
Bitsuamlak
,
G. T.
,
2010
, “
Application of CFD in Modelling Wind-Induced Natural Ventilation of Buildings—A Review
,”
Int. J. Vent.
,
9
(
2
), pp.
131
147
.
7.
Li
,
L.
, and
Mak
,
C. M.
,
2007
, “
The Assessment of the Performance of a Wind Catcher System Using Computational Fluid Dynamics
,”
Build. Environ.
,
42
(
3
), pp.
1135
1141
.
8.
Jimenez-Xaman
,
C.
,
Xaman
,
J.
,
Moraga
,
N. O.
,
Hernandez-Perez
,
I.
,
Zavala-Guillen
,
I.
,
Arce
,
J.
, and
Jiménez
,
M. J.
,
2019
, “
Solar Chimneys With a Phase Change Material for Buildings: An Overview Using CFD and Global Energy Balance
,”
Energy Build.
,
186
(
1
), pp.
384
404
.
9.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2015
, “
Numerical Investigation of Flow Through an Artificially Roughened Solar Air Heater
,”
Int. J. Ambient Energy
,
36
(
2
), pp.
87
100
.
10.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD-Based Thermal Performance Prediction of Solar Air Heater Provided With Chamfered Square Rib as Artificial Roughness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
2
), pp.
643
663
.
11.
Gupta
,
A. D.
, and
Varshney
,
L.
,
2017
, “
Performance Prediction for Solar Air Heater Having Rectangular Sectioned Tapered Rib Roughness Using CFD
,”
Therm. Sci. Eng. Prog.
,
4
, pp.
122
132
.
12.
Boulemtafes-Boukadoum,
,
A.
, and
Benzaoui
,
A.
,
2014
, “
CFD Based Analysis of Heat Transfer Enhancement in Solar Air Heater Provided With Transverse Rectangular Ribs
,”
Energy Procedia
,
50
(
1
), pp.
761
772
.
13.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
Heat Transfer and Fluid Flow Analysis of an Artificially Roughened Solar Air Heater: A CFD Based Investigation
,”
Front. Energy
,
8
(
2
), pp.
201
211
.
14.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Turbulent Flows Through an Artificially Roughened Solar Air Heater
,”
Numer. Heat Transfer Part A
,
65
(
7
), pp.
679
698
.
15.
Ranjan
,
R.
,
Paswan
,
M. K.
, and
Prasad
,
N.
,
2016
, “
CFD Analysis of Thermal Performance in Isosceles Right Triangle Rib Roughness on the Absorber Plate Solar Air Heater
,”
Indian J. Sci. Technol.
,
9
(
38
), pp.
1
11
.
16.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD-Based Thermal Performance Prediction of Solar Air Heater Provided With Right-Angle Triangular Rib as Artificial Roughness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
2
), pp.
551
579
.
17.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transfer
,
70
(
1
), pp.
1016
1039
.
18.
Kumar
,
M.
, and
Varun
,
2014
, “
A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided With Inclined Circular Ribs as Artificial Roughness
,”
J. Ind. Eng.
,
4
(
3
), pp.
115
120
.
19.
Kumar
,
A.
,
2014
, “
Analysis of Heat Transfer and Fluid Flow in Different Shaped Roughness Elements on the Absorber Plate Solar air Heater Duct
,”
Energy Procedia
,
57
(
1
), pp.
2102
2111
.
20.
Skullong
,
S.
,
Promthaisong
,
P.
,
Promvonge
,
P.
,
Thianpong
,
C.
, and
Pimsarn
,
M.
,
2018
, “
Thermal Performance in Solar Air Heater With Perforated-Winglet-Type Vortex Generator
,”
Sol. Energy
,
170
(
1
), pp.
1101
1117
.
21.
Handoyo
,
E. A.
,
Ichsani
,
D.
,
Prabowo,
, and
Sutardi,
,
2016
, “
Numerical Studies on the Effect of Delta-Shaped Obstacles’ Spacing on the Heat Transfer and Pressure Drop in v-Corrugated Channel of Solar Air Heater
,”
Sol. Energy
,
131
(
1
), pp.
47
60
.
22.
Rajarajeswari
,
K.
, and
Sreekumar
,
A.
,
2016
, “
Matrix Solar Air Heaters–A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
704
712
.
23.
Mohamad
,
A. A.
,
1997
, “
High Efficiency Solar Air Heater
,”
Sol. Energy
,
60
(
2
), pp.
71
76
.
24.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
313
.
25.
Yeh
,
H. M.
,
Ho
,
C. D.
, and
Hou
,
J. Z.
,
2002
, “
Collector Efficiency of Double-Flow Solar Air Heaters With Fins Attached
,”
Energy
,
27
(
8
), pp.
715
727
.
26.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal Performance of Double Pass Packed Bed Solar Air Heaters—A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
53
(
1
), pp.
1010
1031
.
27.
Mathur
,
A.
, and
Agrawal
,
G. D.
,
2016
, “
Thermal Performance Investigation and Optimisation of Fin Type Solar Air Heater—A CFD Approach
,”
Prog. Comput. Fluid Dyn.
,
16
(
1
), pp.
58
65
.
28.
Priyam
,
A.
, and
Chand
,
P.
,
2016
, “
Thermal and Thermohydraulic Performance of Wavy Finned Absorber Solar air Heater
,”
Sol. Energy
,
130
, pp.
250
259
.
29.
Nwosu
,
N. P.
,
2010
, “
Employing Exergy-Optimized pin Fins in the Design of an Absorber in a Solar Air Heater
,”
Energy
,
35
(
2
), pp.
571
575
.
30.
Peng
,
D.
,
Zhang
,
X.
,
Dong
,
H.
, and
Lv
,
K.
,
2010
, “
Performance Study of a Novel Solar Air Collector
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2594
2601
.
31.
Mittal
,
M. K.
, and
Varshney
,
L.
,
2006
, “
Optimal Thermohydraulic Performance of a Wire Mesh Packed Solar Air Heater
,”
Sol. Energy
,
80
(
9
), pp.
1112
1120
.
32.
Gupta
,
M. K.
, and
Kaushik
,
S. C.
,
2009
, “
Performance Evaluation of Solar Air Heater Having Expanded Metal Mesh as Artificial Roughness on Absorber Plate
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
1007
1016
.
33.
Cortes
,
A.
, and
Piacentini
,
R.
,
1990
, “
Improvement of the Efficiency of a Bare Solar Collector by Means of Turbulence Promoters
,”
Appl. Energy
,
36
(
4
), pp.
253
261
.
34.
Manjunath
,
M. S.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2017
, “
Numerical Analysis of the Influence of Spherical Turbulence Generators on Heat Transfer Enhancement of Flat Plate Solar Air Heater
,”
Energy
,
121
(
1
), pp.
616
630
.
35.
Bhamjee
,
M.
,
Nurick
,
A.
, and
Madyira
,
D. M.
,
2013
, “
An Experimentally Validated Mathematical and CFD Model of a Supply Air Window: Forced and Natural Flow
,”
Energy Build.
57
(
1
), pp.
289
301
.
36.
ansys fluent
,
2015
, 16.2. Documentation, ANSYS, Inc.
37.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renewable Energy
,
25
(
3
), pp.
341
369
.
38.
Manjunath
,
M. S.
,
Karanth
,
K. V.
, and
Sharma
,
N. Y.
,
2018
, “
Numerical Investigation on Heat Transfer Enhancement of Solar Air Heater Using Sinusoidal Corrugations on Absorber Plate
,”
Int. J. Mech. Sci.
,
138–139
(
1
), pp.
219
228
.
This content is only available via PDF.
You do not currently have access to this content.