Savonius rotor, a class of drag-driven vertical axis wind turbine, has been extensively investigated mainly to calculate the torque and power coefficients (CT and CP) by various investigators. Hitherto, studies related to lift and drag characteristics are very few and have mainly been restricted to a semicircular-bladed rotor. A deeper investigation into the drag and lift coefficients (CD and CL) can result in the better design of rotor blades leading to an increment in CT and CP. In view of this, in the present investigation, CD and CL of an elliptical-bladed rotor with vent augmenters have been studied numerically. Initially, two-dimensional (2D) unsteady simulations using an ansys fluent solver is carried out to estimate the instantaneous CD and CL. The shear stress transport (SST) k–ω turbulence model is selected to solve the Reynolds averaged Navier Stokes (RANS) equations. Finally, three-dimensional (3D) unsteady simulations are carried out for the vented elliptical-bladed rotor. The unsteady simulations are performed for the nonvented elliptical- and semicircular-bladed rotors at the identical condition in order to have a direct comparison. From the unsteady simulations, the average CD for the vented elliptical profile is found to be 1.45; whereas, the average CD for the nonvented elliptical and semicircular profiles is found to be 1.43 and 1.35, respectively.

References

References
1.
Ahmadi
,
G.
,
1978
, “
Some Preliminary Results on the Performance of a Small Vertical Axis Cylindrical Wind Turbine
,”
Wind Eng.
,
2
(
2
), pp.
65
74
.
2.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Pittalwala
,
A.
,
1983
, “
Blade Configurations and Performance of the Savonius Rotor With Application to an Irrigation System in Indonesia
,”
ASME J. Sol. Energy Eng.
,
105
(
3
), pp.
294
299
.
3.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
4.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
5.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
6.
Sathyajith
,
M.
,
2006
,
Wind Energy: Fundamentals, Resource Analysis and Economics
,
Springer Science & Business Media
,
New York
.
7.
Fortunato
,
B.
,
Dadone
,
A.
, and
Trifoni
,
V.
,
1995
, “
A Two-Dimensional Methodology to Predict Vertical Axis Wind Turbine Performance
,”
ASME J. Sol. Energy Eng.
,
117
(
3
), pp.
187
193
.
8.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), pp.
1
9
.
9.
Edwards
,
J. M.
,
Angelo Danao
,
L.
, and
Howell
,
R. J.
,
2012
, “
Novel Experimental Power Curve Determination and Computational Methods for the Performance Analysis of Vertical Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031008
.
10.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
2012
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011016
.
11.
Xisto
,
C. M.
,
Páscoa
,
J. C.
, and
Trancossi
,
M.
,
2016
, “
Geometrical Parameters Influencing the Aerodynamic Efficiency of a Small-Scale Self-Pitch High-Solidity VAWT
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
031006
.
12.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
13.
Modi
,
V.
, and
Fernando
,
M.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
14.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
15.
Castelli
,
M. R.
, and
Benini
,
E.
,
2012
, “
Effect of Blade Inclination Angle on a Darrieus Wind Turbine
,”
ASME J. Turbomach.
,
134
(
3
), p.
031016
.
16.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell’Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
17.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Ribando
,
R. J.
,
2011
, “
Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041010
.
18.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine
,”
Procedia Eng.
,
51
(
NUiCONE 2012
), pp.
694
702
.
19.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
20.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
21.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renew. Sustain. Energy Rev.
73
, pp.
904
921
.
22.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
3054
3064
.
23.
Tartuferi
,
M.
,
Alessandro
,
V. D.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
.
24.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
25.
Shikha
,
Bhatti
,
T. S.
, and
Kothari
,
D. P.
,
2003
, “
Wind Energy Conversion Systems as a Distributed Source of Generation
,”
J. Energy Eng.
,
129
(
3
), pp.
69
80
.
26.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
AbdEL-hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
139
, pp.
8
15
.
27.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renew. Energy
,
34
(
3
), pp.
521
529
.
28.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renew. Energy
,
89
, pp.
231
244
.
29.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons Limited
,
New York
.
30.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. A
,
227
(
4
), pp.
528
542
.
31.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
158
, pp.
36
49
.
32.
Chauvin
,
A.
, and
Benghrib
,
D.
,
1989
, “
Drag and Lift Coefficients Evolution of a Savonius Rotor
,”
Exp. Fluids
,
8
(
1–2
), pp.
118
120
.
33.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
34.
Jaohindy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renew. Energy
,
55
, pp.
286
295
.
35.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
121
, pp.
281
296
.
36.
Alom
,
N.
,
Borah
,
B.
, and
Saha
,
U. K.
,
2018
, “
An Insight Into the Drag and Lift Characteristics of Modified Bach and Benesh Profiles of Savonius Rotor
,”
Energy Procedia
,
144
, pp.
50
56
.
37.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
38.
Alom
,
N.
, and
Saha
,
U. K.
,
2017
, “
Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed Savonius Rotor
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
,
ASME
Paper No. GT2017-64137.
39.
Gavalda
,
J.
,
Massons
,
J.
, and
Giaz
,
F.
,
1991
, “
Drag and Lift Coefficient of the Savonius Wind Machine
,”
Wind Eng.
,
15
(
5
), pp.
240
246
.
40.
Alom
,
N.
,
Kumar
,
N.
, and
Saha
,
U. K.
,
2017
, “
Aerodynamic Performance of an Elliptical-Bladed Savonius Rotor Under Influence Number of Blades and Shaft
,”
ASME Gas Turbine India Conference
,
Bangalore
,
Dec. 7–9
,
ASME
Paper No. GTIndia2017-4554.
41.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan
,
June 19–24
,
ASME
Paper No. OMAE2016-55095.
42.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renew. Energy
,
51
, pp.
373
381
.
43.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
44.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renew. Sustain. Energy
,
4
(
4
), p.
042703
.
45.
Plourde
,
B.
,
Abraham
,
J.
,
Mowry
,
G.
, and
Minkowycz
,
W.
,
2012
, “
Simulations of Three-Dimensional Vertical-Axis Turbines for Communications Applications
,”
Wind Eng.
,
36
(
4
), pp.
443
454
.
46.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME Gas Turbine India Conference
,
New Delhi
,
Dec. 15–17
, ASME Paper No. GTINDIA2014-8141
.
47.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renew. Energy
,
60
, pp.
578
585
.
48.
Alom
,
N.
, and
Saha
,
U. K.
,
2016
, “
Numerical Optimization of Semicircular-Bladed Savonius Rotor Using Vent Augmenters
,”
Proceedings of Asian Congress on Gas Turbines, ACGT2016
,
IIT Bombay, Mumbai
,
Nov. 14–16
, pp.
1
9
.
49.
ANSYS Inc
,
2009
, “
ANSYS Fluent Theory Guide 12.0
.”
50.
Alakashi
,
A. M.
, and
Basuno
,
I. B.
,
2014
, “
Comparison Between Structured and Unstructured Grid Generation on Two Dimensional Flows Based on Finite Volume Method (FVM)
,”
Int. J. Mining Metall. Mech. Eng.
,
2
(
2
), pp.
97
103
.
51.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
, and
Tian
,
W.
,
2017
, “
A Novel Wake Energy Reuse Method to Optimize the Layout for Savonius-Type Vertical Axis Wind Turbines
,”
Energy
,
121
, pp.
341
355
.
52.
Fujisawa
,
N.
,
Ishimatsu
,
K.
, and
Kage
,
K.
,
1995
, “
A Comparative Study of Navier–Stokes Calculations and Experiments for the Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
117
(
4
), pp.
344
346
.
53.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1990
, “
Unsteady Aerodynamics and Wake of the Savonius Wind Turbine: A Numerical Study
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
(
5
), pp.
811
816
.
54.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
55.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renew. Energy
,
35
(
2
), pp.
412
422
.
56.
Song
,
C.
,
Zheng
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jiang
,
H.
,
2015
, “
Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines
,”
J. Renew. Sustain. Energy
,
7
(
3
), p.
033111
.
57.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2017
, “
CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor
,”
Energy Convers. Manage.
144
, pp.
275
285
.
58.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage.
127
, pp.
43
54
.
59.
Nasef
,
M. H.
,
El-Askary
,
W. A.
,
AbdEL-hamid
,
A. A.
, and
Gad
,
H. E.
,
2013
, “
Evaluation of Savonius Rotor Performance: Static and Dynamic Studies
,”
J. Wind Eng. Ind. Aerodyn.
123
, pp.
1
11
.
60.
Wilcox
,
D. C.
,
1994
,
Turbulence Modelling for CFD
,
DCW Industries
,
La Cañada Flintridge, CA
.
61.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
62.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
,
2010
, “
Kolmogorov Scaling of Turbulent Flow in the Vicinity of the Wall
,”
Physica D
,
239
, pp.
1288
1295
.
You do not currently have access to this content.