The aim of this study was to conduct thermodynamic and economic analyses of a concentrated solar power (CSP) plant to drive a supercritical CO2 recompression Brayton cycle. The objectives were to assess the system viability in a location of moderate-to-high-temperature solar availability to sCO2 power block during the day and to investigate the role of thermal energy storage with 4, 8, 12, and 16 h of storage to increase the solar share and the yearly energy generating capacity. A case study of system optimization and evaluation is presented in a city in Saudi Arabia (Riyadh). To achieve the highest energy production per unit cost, the heliostat geometry field design integrated with a sCO2 Brayton cycle with a molten-salt thermal energy storage (TES) dispatch system and the corresponding operating parameters are optimized. A solar power tower (SPT) is a type of CSP system that is of particular interest in this research because it can operate at relatively high temperatures. The present SPT-TES field comprises of heliostat field mirrors, a solar tower, a receiver, heat exchangers, and two molten-salt TES tanks. The main thermoeconomic indicators are the capacity factor and the levelized cost of electricity (LCOE). The research findings indicate that SPT-TES with a supercritical CO2 power cycle is economically viable with 12 h thermal storage using molten salt. The results also show that integrating 12 h-TES with an SPT has a high positive impact on the capacity factor of 60% at the optimum LCOE of $0.1078/kW h.

References

References
1.
Coelho
,
B.
,
Varga
,
S.
,
Oliveira
,
A.
, and
Mendes
,
A.
,
2014
, “
Optimization of an Atmospheric Air Volumetric Central Receiver System: Impact of Solar Multiple, Storage Capacity and Control Strategy
,”
Renew. Energy
,
63
, pp.
392
401
.
2.
Hernández-Moro
,
J.
, and
Martínez-Duart
,
J. M.
,
2013
, “
Analytical Model for Solar PV and CSP Electricity Costs: Present LCOE Values and Their Future Evolution
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
119
132
.
3.
Parrado
,
C.
,
Girard
,
A.
,
Simon
,
F.
, and
Fuentealba
,
E.
,
2016
, “
2050 LCOE (Levelized Cost of Energy) Projection for a Hybrid PV (Photovoltaic)-CSP (Concentrated Solar Power) Plant in the Atacama Desert, Chile
,”
Energy
,
94
, pp.
422
430
.
4.
Ju
,
X.
,
Xu
,
C.
,
Hu
,
Y.
,
Han
,
X.
,
Wei
,
G.
, and
Du
,
X.
,
2017
, “
A Review on the Development of Photovoltaic/Concentrated Solar Power (PV-CSP) Hybrid Systems
,”
Sol. Energy Mater. Sol. Cells
,
161
, pp.
305
327
.
5.
Rea
,
J. E.
,
Oshman
,
C. J.
,
Olsen
,
M. L.
,
Hardin
,
C. L.
,
Glatzmaier
,
G. C.
,
Siegel
,
N. P.
,
Parilla
,
P. A.
,
Ginley
,
D. S.
, and
Toberer
,
E. S.
,
2018
, “
Performance Modeling and Techno-Economic Analysis of a Modular Concentrated Solar Power Tower With Latent Heat Storage
,”
Appl. Energy
,
217
, pp.
143
152
.
6.
Fisher
,
K.
,
Yu
,
Z.
,
Striling
,
R.
, and
Holman
,
Z.
,
2017
, “
PVMirrors: Hybrid PV/CSP Collectors That Enable Lower LCOEs
,”
AIP Conf. Proc.
,
1850
, p.
020004
.
7.
Schmitt
,
J.
,
Wilkes
,
J.
,
Allison
,
T.
,
Bennett
,
J.
,
Wygant
,
K.
, and
Pelton
,
R.
, “
Lowering the Levelized Cost of Electricity of a Concentrating Solar Power Tower With a Supercritical Carbon Dioxide Power Cycle
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017
,
Charlotte, NC
,
June 26–30, 2017
.
8.
Hinkley
,
J. T.
,
Hayward
,
J. A.
,
Curtin
,
B.
,
Wonhas
,
A.
,
Boyd
,
R.
,
Grima
,
C.
,
Tadros
,
A.
,
Hall
,
R.
, and
Naicker
,
K.
,
2013
, “
An Analysis of the Costs and Opportunities for Concentrating Solar Power in Australia
,”
Renew. Energy
,
57
, pp.
653
661
.
9.
Turchi
,
C.
,
Mehos
,
M.
,
Ho
,
C. K.
, and
Kolb
,
G. J.
,
2010
,
Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market
. No. NREL/CP-5500-49303. National Renewable Energy Lab (NREL), Golden, CO.
10.
Avila-Marin
,
A. L.
,
Fernandez-Reche
,
J.
, and
Tellez
,
F. M.
,
2013
, “
Evaluation of the Potential of Central Receiver Solar Power Plants: Configuration, Optimization and Trends
,”
Appl. Energy
,
112
, pp.
274
288
.
11.
Eddhibi
,
F.
,
Ben Amara
,
M.
,
Balghouthi
,
M.
, and
Guizani
,
A.
,
2015
, “
Optical Study of Solar Tower Power Plants
,”
J. Phys. Conf. Ser.
,
596
(
1
), p.
012018
.
12.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
13.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2017
, “
Energy and Exergy Analyses of Solar Tower Power Plant Driven Supercritical Carbon Dioxide Recompression Cycles for Six Different Locations
,”
Renew. Sustain. Energy Rev.
,
68
, pp.
153
167
.
14.
Al-Sulaiman
,
F. A.
, and
Atif
,
M.
,
2015
, “
Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Power Tower
,”
Energy
,
82
, pp.
61
71
.
15.
Wang
,
K.
, and
He
,
Y. L.
,
2017
, “
Thermodynamic Analysis and Optimization of a Molten Salt Solar Power Tower Integrated With a Recompression Supercritical CO2 Brayton Cycle Based on Integrated Modeling
,”
Energy Convers. Manag.
,
135
, pp.
336
350
.
16.
Wang
,
K.
,
He
,
Y. L.
, and
Zhu
,
H. H.
,
2017
, “
Integration Between Supercritical CO2 Brayton Cycles and Molten Salt Solar Power Towers: A Review and a Comprehensive Comparison of Different Cycle Layouts
,”
Appl. Energy
,
195
, pp.
819
836
.
17.
Flesch
,
R.
,
Frantz
,
C.
,
Maldonado Quinto
,
D.
, and
Schwarzbözl
,
P.
,
2017
, “
Towards an Optimal Aiming for Molten Salt Power Towers
,”
Sol. Energy
,
155
, pp.
1273
1281
.
18.
Turchi
,
C. S.
,
Vidal
,
J.
, and
Bauer
,
M.
,
2018
, “
Molten Salt Power Towers Operating at 600–650°C: Salt Selection and Cost Benefits
,”
Sol. Energy
,
164
, pp.
38
46
.
19.
Cocco
,
D.
, and
Serra
,
F.
,
2015
, “
Performance Comparison of Two-Tank Direct and Thermocline Thermal Energy Storage Systems for 1 MWe Class Concentrating Solar Power Plants
,”
Energy
,
81
, pp.
526
536
.
20.
System Advisor Model
,” Version 2017.11.11,
National Renewable Energy Laboratory
,
Golden, CO
.
21.
Collado
,
F. J.
, and
Guallar
,
J.
,
2013
, “
A Review of Optimized Design Layouts for Solar Power Tower Plants with Campo Code
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
142
154
.
22.
Besarati
,
S. M.
,
2014
, “
Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power Applications
,”
University of South Florida
.
23.
Hottel
,
H. C.
,
1976
, “
A Simple Model for Estimating the Transmittance of Direct Solar Radiation Through Clear Atmospheres
,”
Sol. Energy
,
18
(
2
), pp.
129
134
.
24.
Wagner
,
M. J.
,
2008
, “
Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants
,” M.S. thesis,
University of Wisconsin
,
Madison
.
25.
Schmitz
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
(
1
), pp.
111
120
.
26.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2015
, “
Optimization of Heliostat Field Layout in Solar Central Receiver Systems on Annual Basis Using Differential Evolution Algorithm
,”
Energy Convers. Manag.
,
95
, pp.
1
9
.
27.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT™: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
, pp.
185
196
.
28.
Chacartegui
,
R.
,
Muñoz De Escalona
,
J. M.
,
Sánchez
,
D.
,
Monje
,
B.
, and
Sánchez
,
T.
,
2011
, “
Alternative Cycles Based on Carbon Dioxide for Central Receiver Solar Power Plants
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
872
879
.
29.
Zare
,
V.
, and
Hasanzadeh
,
M.
,
2016
, “
Energy and Exergy Analysis of a Closed Brayton Cycle-Based Combined Cycle for Solar Power Tower Plants
,”
Energy Convers. Manag.
,
128
, pp.
227
237
.
30.
Oh
,
C. H.
,
Kim
,
E. S.
, and
Patterson
,
M.
,
2010
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032903
.
31.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle
”.
32.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Aljabr
,
A.
,
2018
, “
Performance Comparison and Parametric Analysis of sCO2 Power Cycles Configurations
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15, 2018
, p.
V06BT08A007
. American Society of Mechanical Engineers. Volume 6B: Energy.
33.
Seidel
,
W.
,
2011
, “
Model Development and Annual Simulation of the Supercritical Carbon Dioxide Brayton Cycle for Concentrating Solar Power Applications
,” M.S. thesis,
University of Wisconsin
,
Madison
.
34.
Dyreby
,
J. J.
,
2014
, “
Modeling the Supercritical Carbon Dioxide Brayton Cycle With Recompression
,” Ph.D. thesis,
University of Wisconsin-Madison, Madison, WI
.
35.
Dostal
,
V.
, and
Kulhanek
,
M.
, “
Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic
,”
Proceedings of SCCO2 Power Cycle Symposium 2009 RPI
,
Troy, NY
,
April 29–30, 2009
.
36.
Bryant
,
J. C.
,
Saari
,
H.
, and
Zanganeh
,
K.
, “
An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles
,”
Supercritical CO2 Power Cycle Symposium
,
Boulder, CO
,
May 24–25, 2011
.
37.
Turchi
,
C. S.
, and
Heath
,
G. A.
,
2013
,
Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)
. No. NREL/TP-5500-57625. National Renewable Energy Lab (NREL), Golden, CO.
38.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” National Renewable Energy Laboratory, Report No. NREL/Tp-5500-67464.
39.
Mancini
,
T. R.
,
Gary
,
J. A.
,
Kolb
,
G. J.
, and
Ho
,
C. K.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,”
Albuquerque, NM
.
40.
Kelly
,
B. D.
,
2010
, “
Advanced Thermal Storage for Central Receivers with Supercritical Coolants
”.
41.
Comello
,
S. D.
,
Glenk
,
G.
, and
Reichelstein
,
S.
,
2017
, “
Levelized Cost of Electricity Calculator
”.
42.
Jones
,
S. A.
,
Lumia
,
R.
,
Davenport
,
R.
,
Thomas
,
R.
,
Gorman
,
D.
,
Kolb
,
G. J.
, and
Donnelly
,
M. W.
,
2007
, “
Heliostat Cost Reduction Study
,” Sandia National Laboratory, Report No. Sand2007-3293.
43.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Aljabr
,
A.
, “
Thermodynamic Analysis and Multi-Objective Optimizations of a Combined Recompression sCO2 Brayton Cycle: tCO2 Rankine Cycles for Waste Heat Recovery
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15, 2018
, p.
V06BT08A007
. American Society of Mechanical Engineers. Volume 8A: Heat Transfer and Thermal Engineering.
44.
Kolb
,
G. J.
,
2011
, “
An Evaluation of Possible Next-Generation High-Temperature Molten-Salt Power Towers
,” Sandia National Laboratories, Report No. SAND2011-9320.
You do not currently have access to this content.