This paper presents the modeling theory and results of an innovative thermal energy storage (TES) facility, ideated, realized, and tested by ENEA (Italy). This prototype enabled the thermocline storage with molten salts in a novel geometry ideated for small-medium scale decentralized solutions, which includes two vertical channels to force the circulation through two heat exchangers, respectively, and realized for charging and discharging phases (in a single tank). A thermophysical model was built and tested properly for this particular geometry in order to analyze the temperature distribution along the radius. The numerical results well reproduced the experimental values. Furthermore, the analytical solution provided a short-cut methodology able to evaluate the thermocline distribution (along the vertical axis) depending on both the time and the radius values. Hence, the influence of the radial position (r) on the thermocline degradation was studied finding that, at the edges (r → 1), the thermocline remains unchanged for longer (around ten times more) than at the center of the tank (r → 0). The obtained numerical modeling and the analytical correlation can be useful for the process analysis to scale-up the thermal storage system and to evaluate the system reliability for industrial plants.

References

References
1.
IEA-ETSAP and IRENA © Technology
Brief E10—
Jan
.
2013
, www.etsap.orgwww.irena.orgIrena
3.
Flueckiger
,
S. M.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2013
, “
Design of Molten-Salt Thermocline Tanks for Solar Thermal Energy Storage
,”
Heat Transf. Eng.
,
34
(
10
), pp.
787
800
.
4.
Siegel
,
N. P.
,
2012
, “
Thermal Energy Storage for Solar Power Production
,”
WENE
,
1
, pp.
119
131
.
5.
IEA
,
2014
,
Technology Roadmap Solar Thermal Electricity
,
OECD/International Energy Agency (IEA)
,
Paris, France
, www.iea.org
6.
Turchetti
,
L.
,
2016
, “
Introduction to Thermal Energy Storage for CST Plants
,” www.nester.cyi.ac.cy; “Networking for Excellence in Solar Thermal Energy—Research Networking for Excellence in Solar Thermal energy Research,” www.nester.cyi.ac.cy
8.
Breidenbach
,
N.
,
Martin
,
C.
,
Jockenhöfer
,
H.
, and
Bauer
,
T.
,
2016
, “
Thermal Energy Storage in Molten Salts: Overview of Novel Concepts and the DLR Test Facility TESIS
,”
Energy Proc.
,
99
, pp.
120
129
.
9.
Liu
,
M.
,
Tay
,
N. H. S.
,
Bell
,
S.
,
Belusko
,
M.
,
Jacob
,
R.
,
Will
,
G.
,
Samana
,
W.
, and
Bruno
,
F.
,
2016
, “
Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1411
1432
.
10.
Sabihuddin
,
S.
,
Kiprakis
,
A. E.
, and
Mueller
,
M.
,
2015
, “
A Numerical and Graphical Review of Energy Storage Technologies
,”
Energies
,
8
, pp.
172
216
.
11.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
J. Sol. Energy Eng.
,
124
, pp.
153
159
.
12.
Brosseau
,
D.
,
Kelton
,
J. W.
,
Ray
,
D.
,
Edgar
,
M.
,
Chisman
,
K.
, and
Emms
,
B.
,
2005
, “
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants
,”
Sol. Energy Eng. Trans. ASME
,
127
, pp.
109
116
.
13.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
J. Sol. Energy Eng.
,
125
, pp.
170
176
.
14.
De Falco
,
M.
,
Capocelli
,
M.
, and
Giannattasio
,
A.
,
2016
, “
Performance Analysis of an Innovative PCM-Based Device for Cold Storage in the Civil Air Conditioning
,”
Energy Build.
,
122
, pp.
1
10
.
15.
Xu
,
C.
,
Li
,
X.
,
Wang
,
Z.
,
He
,
Y.
, and
Bai
,
F.
,
2013
, “
Effects of Solid Particle Properties on the Thermal Performance of a Packed-Bed Molten-Salt Thermocline Thermal Storage System
,”
Appl. Therm. Eng.
,
57
, pp.
69
80
.
16.
Xu
,
C.
,
Li
,
X.
,
Wang
,
Z.
,
He
,
Y.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance
,”
Appl. Energy
,
92
, pp.
65
75
.
17.
Bayon
,
R.
, and
Rojas
,
E.
,
2014
, “
Analytical Description of Thermocline Tank Performance in Dynamic Processes and Stand-By Periods
,”
Energy Proc.
,
57
, pp.
617
626
.
18.
Pizzolato
,
A.
,
Donato
,
F.
,
Verda
,
V.
, and
Santarelli
,
M.
,
2015
, “
CFD-Based Reduced Model for the Simulation of Thermocline Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
76
, pp.
391
399
.
19.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Molten Salt Thermal Energy Storage in Thermoclines Under Different Environmental Boundary Conditions
,”
Appl. Energy
,
87
(
11
), pp.
3322
3329
.
20.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
CTRC Research Publications
, Paper 150,
21.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
,
Garimella
,
S. V.
, and
Pacheco
,
J. E.
,
2014
, “
Thermal Energy Storage. System-Level Simulation of a Solar Power Tower Plant With Thermocline
,”
Appl. Energy
,
113
, pp.
86
96
.
22.
Bayon
,
R.
, and
Rojas
,
E.
,
2014
, “
Analytical Function Describing the Behaviour of a Thermocline Storage Tank: A Requirement for Annual Simulations of Solar Thermal Power Plants
,”
Int. J. Heat Mass Transf.
,
68
, pp.
641
648
.
23.
Flueckiger
,
S. N.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2012
, “
Thermomechanical Simulation of the Solar One Thermocline Storage Tank
,”
J. Sol. Energy Eng.
,
134
, p.
041014
.
24.
Haertel
,
J. H. K.
,
2018
, “
Design of Thermal Systems Using Topology Optimization
,” Ph.D. thesis,
Technical University of Denmark (DTU)
,
Kongens Lyngby, Denmark
.
25.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
, and
Verda
,
V.
,
2017
, “
Topology Optimization for Heat Transfer Enhancement in Latent Heat Thermal Energy Storage
,”
Int. J. Heat Mass Transf.
,
113
, pp.
875
888
.
26.
Ooka
,
R.
, and
Ikeda
,
S.
,
2015
, “
A Review on Optimization Techniques for Active Thermal Energy Storage Control
,”
Energy Build.
,
106
, pp.
225
233
.
27.
Cole
,
W. J.
,
Powell
,
K. M.
, and
Edgar
,
T. F.
,
2012
, “
Optimization and Advanced Control of Thermal Energy Storage Systems
,”
Rev. Chem. Eng.
,
28
, pp.
81
99
.
28.
De Falco
,
M.
, and
Piemonte
,
V.
,
2011
, “
Solar Enriched Methane Production by Steam Reforming Process: Reactor Design
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7759
7762
.
29.
Capocelli
,
M.
,
Balsamo
,
M.
,
Lancia
,
A.
, and
Barba
,
D.
,
2018
, “
Process Analysis of a Novel Humidification-Dehumidification-Adsorption (HDHA) Desalination Method
,”
Desalination
,
429
, pp.
155
166
. 10.1016/j.desal.2017.12.020
30.
Mokhtar
,
M.
,
Tauha Ali
,
M.
,
Bräuniger
,
S.
,
Afshari
,
A.
,
Sgouridis
,
S.
,
Armstrong
,
P.
, and
Chiesa
,
M.
,
2010
, “
Systematic Comprehensive Techno-Economic Assessment of Solar Cooling Technologies Using Location-Specific Climate Data
,”
Appl. Energy
,
87
, pp.
3766
3778
.
31.
STS-MED Project
,
2018
, http://www.stsmed.eu/
32.
Capocelli
,
M.
,
Caputo
,
G.
,
De Falco
,
M.
,
Mazzei
,
D.
, and
Piemonte
,
V.
,
2017
, “
Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
,”
World Acad. Sci. Eng. Technol. Int. J. Energy Environ. Eng.
11
(
10
), pp.
898
902
.
33.
Bayon
,
R.
,
Rivas
,
E.
, and
Rojas
,
E.
,
2014
, “
Study of Thermocline Tank Performance in Dynamic Processes and Stand-By Periods With an Analytical Function
,”
Energy Proc.
,
49
, pp.
725
734
.
34.
Rivas
,
E.
,
Rojas
,
E.
,
Bayón
,
R.
,
Gaggioli
,
W.
,
Rinaldi
,
L.
, and
Fabrizi
,
F.
,
2014
, “
CFD Model of a Molten Salt Tank With Integrated Steam Generator
,”
Energy Proc.
,
49
, pp.
956
964
.
You do not currently have access to this content.