Solar drying is one of the most important processes of preserving agricultural products. This review paper focused mainly on the enhancement of efficiency a solar drying system. The establishment of different techniques and factors, which may affect the performance of solar dryers, helps to improve solar dryers’ effectiveness. Different types of solar dryers were described here; moreover, various performance analyses of solar drying systems (SDSs) were presented. Factors and techniques for improving efficiency of solar dryers were discussed as well. The effect of operating conditions, geometrical conditions, adding of reflectors, heat exchanger, heat pump, photovoltaic source, air circulation mode, and phase change material (PCM) on the efficiency of a solar drying system were studied and discussed. Results showed that climatic conditions such as ambient temperature and solar radiation have an important influence on the solar dryer performance. The chimney integrated in solar dryer increases the buoyant force applied on the air stream to maintain a greater air flow velocity, which removes one side of moisture. The concentrators found to be effective in reducing the drying time by increasing the air temperature inside the dryer. Photovoltaic panels provides electricity source to run electrical components such as the fan to provide a forced air circulation that removes more moisture from the product compared with the natural convection or the heat pump to ensure the drying process at night. PCMs store the thermal energy during sunshine hours and release it after sunset, which can reduce the heat losses and improve the thermal efficiency of the drying system.

References

1.
Muhlbauer
,
W.
,
Esper
,
A.
, and
Muller
,
J.
,
1993
, “
Solar Energy in Agriculture
,”
Proceedings of ISES Solar World Congress
,
Budapest
,
Aug. 23–27
.
2.
Mustayen
,
A. G. M. B.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2014
, “
Performance Study of Different Solar Dryers: A Review
,”
Renew. Sustainable Energ. Rev.
34
,
463
470
.
3.
Mennouche
,
D.
,
Bouchekima
,
B.
,
Boubekri
,
A.
,
Boughali
,
S.
,
Bouguettaia
,
H.
, and
Bechki
,
B.
,
2014
, “
Valorization of Rehydrated Deglet-Nour Dates by an Experimental Investigation of Solar Drying Processing Method
,”
Energ. Convers. Manag.
,
84
, pp.
481
487
.
4.
Chouicha
,
S.
,
Boubekri
,
A.
,
Mennouche
,
D.
,
Bouguetaia
,
H.
,
Berrbeuh
,
M. H.
,
Bouhafs
,
S.
, and
Rezzoug
,
W.
,
2014
, “
Valorization Study of Treated Deglet-Nour Dates By Solar Drying Using Three Different Solar Driers
,”
Energ. Proc.
,
50
, pp.
907
916
.
5.
Fudholi
,
A.
,
Sopian
,
K.
,
Bakhtyar
,
B.
,
Gabbasa
,
M.
,
Othman
,
M. Y.
, and
Ruslan
,
M. H.
,
2015
, “
Review of Solar Drying Systems With Air Based Solar Collectors in Malaysia
,”
Renew. Sust. Energ. Rev.
,
51
, pp.
1191
1204
.
6.
Chouicha
,
S.
,
Boubekri
,
A.
,
Mennouche
,
D.
, and
Berrbeuh
,
M. H.
,
2013
, “
Solar Drying of Sliced Potatoes. An Experimental Investigation
,”
Energ. Proc.
,
36
, pp.
1276
1285
.
7.
Mekhilef
,
S.
,
Faramarzi
,
S.
,
Saidur
,
R.
, and
Salam
,
Z.
,
2013
, “
The Application of Solar Technologies for Sustainable Development of Agricultural Sector
,”
Renew. Sust. Energ. Rev.
,
18
, pp.
583
94
.
8.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Tekasakul
,
P.
,
2015
, “
Applications of Software in Solar Drying Systems: A Review
,”
Renew. Sust. Energ. Rev.
,
51
, pp.
1326
1337
.
9.
Jairaj
,
K. S.
,
Singh
,
S. P.
, and
Srikant
,
K.
,
2009
, “
A Review of Solar Dryers Developed for Grape Drying
,”
Sol. Energ.
,
83
, pp.
1698
1712
.
10.
Forson
,
F. K.
,
Nazha
,
M. A. A.
, and
Rajakaruna
,
H.
,
2007
, “
Modelling and Experimental Studies on a Mixed-Mode Natural Convection Solar Crop-Dryer
,”
Sol. Energ.
,
81
, pp.
346
357
.
11.
Prakash
,
O.
, and
Kumar
,
A.
,
2014
, “
Solar Greenhouse Drying: A Review
,”
Renew. Sust. Energ. Rev.
,
29
, pp.
905
910
.
12.
Lopez
,
R.
,
Vaca
,
M.
,
Terres
,
H.
,
Lizardi
,
A.
,
Morales
,
J.
,
Flores
,
J.
,
Lara
,
A.
, and
Chávez
,
S.
,
2014
, “
Kinetics Modeling of the Drying of Chickpea (Cicer Arietinum) With Solar Energy
,”
Energ. Proc.
,
57
, pp.
1447
1454
.
13.
Pirasteh
,
G.
,
Saidur
,
R.
,
Rahman
,
S. M. A.
, and
Rahim
,
N. A.
,
2014
, “
A Review on Development of Solar Drying Applications
,”
Renew. Sust. Energ. Rev.
,
31
, pp.
133
148
.
14.
Sangamithra
,
A.
,
Swamy
,
G. J.
,
Prema
,
A. S.
,
Priyavarshini
,
R.
,
Chandrasekar
,
R.
, and
Sasikala
,
S.
,
2014
, “
An Overview of a Polyhouse Dryer
,”
Renew. Sust. Energ. Rev.
,
40
, pp.
902
910
.
15.
Fudholi
,
A.
,
Sopian
,
K.
,
Gabbasa
,
M.
,
Bakhtyar
,
B.
,
Yahya
,
M.
,
Ruslan
,
M. H.
, and
Mat
,
S.
,
2015
, “
Techno-Economic of Solar Drying Systems With Water Based Solar Collectors in Malaysia: A Review
,”
Renew. Sust. Energ. Rev.
,
51
, pp.
809
820
.
16.
Sharma
,
V. K.
,
Colangelo
,
A.
,
Spagna
,
G.
,
1994
, “
Experimental Investigation of Different Solar Dryers Suitable for Fruit and Vegetable Drying. Department Enerzia, Divisione Ingegneri Sperimentale, Italy
,”
Drying
94
, pp.
879
86
.
17.
VijayaVenkataRamana
,
S.
,
Iniyanb
,
S.
, and
Goic
,
R.
,
2012
, “
A Review of Solar Drying Technologies
,”
Renew. Sust. Energ. Rev.
,
16
, pp.
2652
2670
.
18.
Singh
,
S.
, and
Kumar
,
A. G. M. B.
,
2012
, “
Testing Method for Thermal Performance Based Rating of Various Solar Dryer Designs
,”
Sol. Energ.
,
86
, pp.
87
98
.
19.
Boroze
,
T.
,
Desmorieux
,
H.
,
Méot
,
J. M.
,
Marouzé
,
C.
,
Azouma
,
Y.
, and
Napo
,
K.
,
2014
, “
Inventory and Comparative Characteristics of Dryers Used in the Sub-Saharan Zone: Criteria Influencing Dryer Choice
,”
Renew. Sust. Energ. Rev.
,
40
, pp.
1240
1259
.
20.
Pangavhane
,
D. R.
, and
Sawhney
,
R. L.
,
2002
, “
Review of Research and Development Work on Solar Dryers for Grape Drying
,”
Energ. Convers. Manag.
,
43
, pp.
45
61
.
21.
Rahman
,
M. M.
,
Mekhilef
,
S.
,
Saidur
,
R.
,
Mustayen Billah
,
A. G. M.
, and
Rahman
,
S. M. A.
,
2016
, “
Mathematical Modelling and Experimental Validation of Solar Drying of Mushrooms
,”
Int. J. Green Energ.
,
13
, pp.
344
351
.
22.
Rahman
,
M. M.
,
Mustayen Billah
,
A. G. M. B.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2015
, “
The Optimization of Solar Drying of Grain by Using a Genetic Algorithm
,”
Int. J. Green Energ.
,
12
, pp.
1222
1231
.
23.
Zarezade
,
M.
, and
Mostafaeipour
,
A.
,
2016
, “
Identifying the Effective Factors on Implementing the Solar Dryers for Yazd Province, Iran
,”
Renew. Sustain. Energ. Rev.
,
57
, pp.
765
775
.
24.
Sevik
,
S.
,
2017
, “
Designing, Manufacturing and Experimental Examining of Hot Air Production System for Heating and Drying That Used With Heat Pump and Solar Collector
,” Thesis.
25.
Xiao
,
H. W.
,
Baia
,
J. W.
,
Xiea
,
L.
,
Sunc
,
D. W.
, and
Gaoa
,
Z. J.
,
2015
, “
Thin-Layer Air Impingement Drying Enhances Drying Rate of American Ginseng (Panaxquinquefolium L.) Slices With Quality Attributes Considered
,”
Food Bioproducts Process.
,
94
, pp.
581
591
.
26.
Sarsavadia
,
P. N.
,
2007
, “
Development of a Solar-Assisted Dryer and Evaluation of Energy Requirement for the Drying of Onion
,”
Renew. Energ.
,
32
, pp.
2529
2547
.
27.
Manaa
,
S.
,
Younssi
,
M.
, and
Moummi
,
N.
,
2013
, “
Solar Drying of Tomato in the Arid Area of TOUAT (Adrar, Algeria)
,”
Energ. Proc.
,
36
, pp.
511
514
.
28.
Shafiq
,
H.
, and
Eqwan
,
M. R.
,
2017
, “
Experimental Study of Direct and Indirect Solar Biomass Dryer
,”
IJSRSET
,
3
(
5
), pp.
471
479
.
29.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Gupta
,
B.
,
2017
, “
A Review on Thermal Models for Greenhouse Dryers
,”
Renew. Sust. Energ. Rev.
,
75
, pp.
548
558
.
30.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2018
, “
Thermal Modeling and Drying Kinetics of Gooseberry Drying Inside North Wall Insulated Greenhouse Dryer
,”
Appl. Therm. Eng.
,
130
, pp.
587
597
.
31.
Chauhan
,
P. S.
,
Kumar
,
A.
,
Nuntadusit
,
C.
, and
Banout
,
J.
,
2018
, “
Thermal Modeling and Drying Kinetics of Bitter Gourd Flakes Drying in Modified Greenhouse Dryer
,”
Renew. Energ.
,
118
, pp.
799
813
.
32.
Nair
,
K. K. V.
, and
Bongirwar
,
D. R.
,
1994
, “
Solar Dryer for Agricultural Products, a Do It Yourself Solar Dryer
,”
Indian Chem. Eng.
,
36
, pp.
103
105
.
33.
El-Sebaii
,
A. A.
,
Abdul-Enein
,
S.
,
Ramdan
,
M. R. I.
, and
El-Gohary
,
H. G.
,
2002
, “
Experimental Investigation of an Indirect Type Natural Convection Solar Dryer
,”
Energ. Convers. Manag.
,
43
, pp.
2251
2266
.
34.
Pangavhane
,
R.
,
Dilip
,
R. L.
, and
Sarsavadia
,
P. N.
,
2002
, “
Design, Development and Performance Testing of a New Natural Convection Solar Dryer
,”
Energy
,
27
, pp.
579
590
.
35.
Abene
,
A.
,
Dubois
,
V.
,
Le Ray
,
M.
, and
Ouagued
,
A.
,
2004
, “
Study of a Solar Air Flat Plate Collector: Use of Obstacles and Application for the Drying of Grape
,”
J. Food Eng.
,
65
, pp.
15
22
.
36.
Finck-Pastrana
,
A. G.
,
2014
, “
Nopal (Opuntia Lasiacantha) Drying Using an Indirect Solar Dryer
,”
Energ. Proc.
,
57
, pp.
2984
2993
.
37.
Sahin
,
S.
,
Sumnu
,
G.
, and
Tunaboyu
,
F.
,
2013
, “
Usage of Solar-Assisted Spouted Bed Drier in Drying of Pea
,”
Food Bioproducts Process.
,
91
, pp.
271
278
.
38.
Lamnatou
,
C.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Kyriakis
,
N.
,
2012
, “
Experimental Investigation and Thermodynamic Performance Analysis of a Solar Dryer Using an Evacuated-Tube air Collector
,”
Appl. Energ.
,
94
, pp.
232
243
.
39.
Duran
,
G.
,
Condorı
,
M.
, and
Altobelli
,
F.
,
2015
, “
Simulation of a Passive Solar Dryer to Charqui Production Using Temperature and Pressure Networks
,”
Sol. Energ.
,
119
, pp.
310
318
.
40.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2016
, “
Performance Analysis of Greenhouse Dryer by Using Insulated North-Wall Under Natural Convection Mode
,”
Energ. Rep.
,
2
, pp.
107
116
.
41.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2017
, “
Heat Transfer Analysis of North Wall Insulated Greenhouse Dryer Under Natural Convection Mode
,”
Energy
,
118
, pp.
1264
1274
.
42.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2018
, “
Thermal Analysis of Insulated North-Wall Greenhouse With Solar Collector Under Passive Mode
,”
Int. J. Sustain. Energ.
,
37
(
4
), pp.
325
339
.
43.
Ringeisen
,
B.
,
Barrett
,
D. M.
, and
Stroeve
,
P.
,
2014
, “
Concentrated Solar Drying of Tomatoes
,”
Energ. Sustain. Dev.
,
19
, pp.
47
55
.
44.
Stiling
,
J.
,
Li
,
S.
,
Stroeve
,
P.
,
Thompson
,
J.
,
Mjawa
,
B.
,
Kornbluth
,
K.
, and
Barrett
,
D. M.
,
2012
, “
Performance Evaluation of an Enhanced Fruit Solar Dryer Using Concentrating Panels
,”
Energ. Sustain. Dev.
,
16
, pp.
224
230
.
45.
Maiti
,
S.
,
Patel
,
P.
,
Vyas
,
K.
,
Eswaran
,
K.
, and
Ghosh
,
P. K.
,
2011
, “
Performance Evaluation of a Small Scale Indirect Solar Dryer With Static Reflectors During Non-Summer Months in the Saurashtra Region of Western India
,”
Sol. Energ.
,
85
, pp.
2686
2696
.
46.
Sevik
,
S.
,
2014
, “
Experimental Investigation of a New Design Solar-Heat Pump Dryer Under the Different Climatic Conditions and Drying Behavior of Selected Products
,”
Sol. Energ.
,
105
, pp.
190
205
.
47.
Li
,
Y.
,
Li
,
H. F.
,
Dai
,
Y. J.
,
Gao
,
S. F.
,
Wei
,
L.
,
Li
,
Z. L.
,
Odinez
,
I. G.
, and
Wang
,
R. Z.
,
2011
, “
Experimental Investigation on a Solar Assisted Heat Pump In-Store Drying System
,”
Appl. Therm. Eng.
31
, pp.
1718
1724
.
48.
Sevik
,
S.
,
2013
, “
Design, Experimental Investigation and Analysis of a Solar Drying System
,”
Energ. Convers. Manag.
,
68
, pp.
227
234
.
49.
Čiplienė
,
A. C.
,
Novošinskas
,
H.
,
Raila
,
A.
, and
Zvicevičius
,
E.
,
2015
, “
Usage of Hybrid Solar Collector System in Drying Technologies of Medical Plants
,”
Energ. Convers. Manag.
,
93
, pp.
399
405
.
50.
Tsamparlis
,
M.
,
1990
, “
Solar Drying for Real Applications
,”
Drying Technol.
,
8
, pp.
261
285
.
51.
Amer
,
B. M. A.
,
Gottschalk
,
K.
, and
Hossain
,
M. A.
,
2018
, “
Integrated Hybrid Solar Drying System and Its Dryingkinetics of Chamomile
,”
Renew. Energ.
,
121
, pp.
539
547
.
52.
Ben Salma
,
R.
,
Combarnous
,
M.
,
2011
, “
Study of Orange Peels Dryings Kinetics and Development of a Solar Dryer by Forced Convection
,”
Sol. Energ.
,
85
, pp.
570
578
.
53.
Fudholi
,
A.
,
Sopian
,
K.
,
Alghoul
,
M. A.
,
Ruslan
,
M. H.
, and
Othman
,
M. Y.
,
2015
, “
Performances and Improvement Potential of Solar Drying System for Palm Oil Fronds
,”
Renew. Energ.
,
78
, pp.
561
565
.
54.
Sinul
,
V.
,
Sharma
,
A.
, and
Sharma
,
N.
,
2012
, “
Construction and Performance Analysis of an Indirect Solar Dryer Integrated With Solar Air Heater
,”
Proc. Eng.
,
38
, pp.
3260
3269
.
55.
Mumba
,
J.
,
1996
, “
A Design and Development of a Solar Grain Dyer Incorporating Photovoltaic Powered Air Circulation
,”
Energ. Convers. Manag.
,
37
(
5
), pp.
615
621
.
56.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Nuntadusit
,
C.
,
2018
, “
Heat Transfer Analysis of PV Integrated Modified Greenhouse Dryer
,”
Renew. Energ.
,
121
,
53
65
.
57.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Nuntadusit
,
C.
,
2018
, “
Thermo-Environomical and Drying Kinetics of Bitter Gourd Flakes Drying Under North Wall Insulated Greenhouse Dryer
,”
Sol. Energ.
,
162
, pp.
205
216
.
58.
Chauhan
,
P. S.
,
Kumar
,
A.
,
Nuntadusit
,
C.
, and
Mishra
,
S. B.
,
2018
, “
Drying Kinetics, Quality Assessment and Economic Analysis of Bitter Gourd Flakes Drying Inside Forced Convection Greenhouse Dryer
,”
J. Sol. Energ. Eng.
,
140
, p.
051001
.
59.
Misha
,
S.
,
Mat
,
S.
,
Ruslan
,
M. H.
,
Salleh
,
E.
, and
Sopian
,
K.
,
2015
, “
Performance of a Solar Assisted Solid Desiccant Dryer for Kenaf Corefiber Drying Under Low Solar Radiation
,”
Sol. Energ.
,
112
, pp.
194
204
.
60.
Reyes
,
A.
,
Negrete
,
D.
,
Mahn
,
A.
, and
Seplveda
,
F.
,
2014
, “
Design and Evaluation of a Heat Exchanger That Uses Paraffin Wax and Recycled Materials as Solar Energy Accumulator
,”
Energ. Convers. Manag.
,
88
, pp.
391
398
.
61.
Amer
,
B. M. A.
,
Hossain
,
M. A.
, and
Gottschalk
,
K.
,
2010
, “
Design and Performance Evaluation of a New Hybrid Solar Dryer for Banana
,”
Energ. Convers. Manag.
,
51
, pp.
813
820
.
62.
Sevik
,
S.
,
Aktas
,
M.
,
Doğan
,
H.
, and
Koçak
,
S.
,
2013
, “
Mushroom Drying With Solar Assisted Heat Pump System
,”
Energ. Convers. Manag.
,
72
, pp.
171
178
.
63.
Fadhel
,
M. I.
,
Sopiana
,
K.
,
Dauda
,
W. R. W.
, and
Alghoul
,
M. A.
,
2011
, “
Review on Advanced of Solar Assisted Chemical Heat Pump Dryer for Agriculture Produce
,”
Renew. Sustain. Energ. Rev.
,
15
, pp.
1152
1168
.
64.
Mohanraj
,
M.
,
2014
, “
Performance of a Solar-Ambient Hybrid Source Heat Pump Drier for Copra Drying Under Hot-Humid Weather Conditions
,”
Energ. Sustain. Dev.
,
23
, pp.
165
169
.
65.
Khartchenko
,
N. V.
,
1997
,
Advanced Energy Systems
,
Institute of Energy Engineering & Technology University
,
Berlin
.
66.
Akmak
,
G. C.
, and
Yıldız
,
C.
,
2011
, “
The Drying Kinetics of Seeded Grape in Solar Dryer With PCM-Based Solar Integrated Collector
,”
Food Bioproducts Process.
,
89
, pp.
103
108
.
67.
Sopian
,
K.
,
Supranto
,
Othman
,
M. Y.
,
Daud
,
W. R. W.
, and
Yatim
,
B.
,
2007
, “
Double-Pass Solar Collectors With Porous Media Suitable for Higher-Temperature Solar Assisted Drying Systems
,”
J. Energ. Eng.
,
133
, pp.
13
81
.
68.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renew. Sustain. Energ. Rev.
,
14
, pp.
615
628
.
69.
Shalaby
,
S. M.
, and
Bek
,
M. A.
,
2014
, “
Experimental Investigation of a Novel Indirect Solar Dryer Implementing PCM as Energy Storage Medium
,”
Energ. Convers. Manag.
,
83
, pp.
1
8
.
70.
Jain
,
D.
, and
Tewari
,
P.
,
2015
, “
Performance of Indirect Through Pass Natural Convective Solar Crop Dryer With Phase Change Thermal Energy Storage
,”
Renew. Energ.
,
80
, pp.
244
250
.
71.
Shalaby
,
S. M.
,
Bek
,
M. A.
, and
El-Sebaii
,
A. A.
,
2014
, “
Solar Dryers With PCM as Energy Storage Medium: A Review
,”
Renew. Sustain. Energ. Rev.
,
33
, pp.
110
116
.
72.
Srivastava
,
A. K.
,
Shukla
,
S. K.
, and
Mishra
,
S.
,
2014
, “
Evaluation of Solar Dryer/Air Heater Performance and the Accuracy of the Result
,”
Energ. Proc.
,
57
, pp.
2360
2369
.
73.
Dina
,
S. F.
,
Ambarita
,
H.
,
Napitupulu
,
F. H.
, and
Kawai
,
H.
,
2015
, “
Study on Effectiveness of Continuous Solar Dryer Integrated With Desiccant Thermal Storage for Drying Cocoa Beans
,”
Case Stud. Therm. Eng.
,
5
, pp.
32
40
.
74.
Reyes
,
A.
,
Mahn
,
A.
, and
Vsquez
,
F.
,
2014
, “
Mushrooms Dehydration in a Hybrid-Solar Dryer, Using a Phase Change Material
,”
Ener. Convers. Manag.
,
83
, pp.
241
248
.
75.
Agarwal
,
A.
, and
Sarviya
,
R. M.
,
2016
, “
An Experimental Investigation of Shell and Tube Latent Heat Storage for Solar Dryer Using Paraffin Wax as Heat Storage Material
,”
Eng. Sci. Technol. Int. J.
,
19
, pp.
619
631
.
76.
Ayadi
,
M.
,
Mabrouk
,
S. B.
,
Zouari
,
I.
, and
Bellagi
,
A.
,
2014
, “
Simulation and Performance of a Solar air Collector and a Storage System for a Drying Unit
,”
Sol. Energ.
,
107
, pp.
292
304
.
77.
Bal
,
L. M.
,
Satya
,
S.
, and
Naik
,
S. N.
,
2010
, “
Solar Dryer With Thermal Energy Storage Systems for Drying Agricultural Food Products: A Review
,”
Renew. Sustain. Energ. Rev.
,
14
, pp.
2298
2314
.
78.
Bal
,
L. M.
,
Satya
,
S.
,
Naik
,
S. N.
, and
Meda
,
V.
,
2011
, “
Review of Solar Dryers With Latent Heat Storage Systems for Agricultural Products
,”
Renew. Sustain. Energ. Rev.
,
15
, pp.
876
880
.
79.
Kenisarin
,
M.
, and
Mahkamov
,
K.
,
2007
, “
Solar Energy Storage Using Phase Change Materials
,”
Renew. Sustain. Energ. Rev.
,
11
(
3
), pp.
1913
1965
.
You do not currently have access to this content.