Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.

References

References
1.
Garg
,
H. P.
,
Mullick
,
S. C.
, and
Bhargava
,
A. K.
,
1985
,
Solar Thermal Energy Storage
,
Springer
,
Dordrecht
.
2.
Regin
,
A. F.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2008
, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renew. Sustain. Energy Rev.
,
12
(
9
), pp.
2438
2451
.
3.
Abhat
,
A.
,
1983
, “
Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials
,”
Solar Energy
,
30
(
4
), pp.
313
332
.
4.
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
,
Heat and Cold Storage With PCM: An Up to Date Introduction Into Basics and Applications
,
Springer Science & Business Media
,
New York
.
5.
Pielichowska
,
K.
, and
Pielichowski
,
K.
,
2014
, “
Phase Change Materials for Thermal Energy Storage
,”
Prog. Mater Sci.
,
65
(
Supplement C
), pp.
67
123
.
6.
Azzouz
,
K.
,
Leducq
,
D.
, and
Gobin
,
D.
,
2008
, “
Performance Enhancement of a Household Refrigerator by Addition of Latent Heat Storage
,”
Int. J. Refrig.
,
31
(
5
), pp.
892
901
.
7.
Mahfuz
,
M. H.
,
Anisur
,
M. R.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Performance Investigation of Thermal Energy Storage System With Phase Change Material (PCM) for Solar Water Heating Application
,”
Int. Commun. Heat Mass Transf.
,
57
(
Supplement C
), pp.
132
139
.
8.
Ismail
,
K. A. R.
, and
de Jesus
,
A. B.
,
2001
, “
Parametric Study of Solidification of PCM Around a Cylinder for Ice-Bank Applications
,”
Int. J. Refrig.
,
24
(
8
), pp.
809
822
.
9.
Kandasamy
,
R.
,
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8
), pp.
1047
1057
.
10.
Sharma
,
S. D.
,
Kitano
,
H.
, and
Sagara
,
K.
,
2004
, “
Phase Change Materials for Low Temperature Solar Thermal Applications
,” ,
29
, pp.
31
64
.
11.
Oró
,
E.
,
Miró
,
L.
,
Farid
,
M. M.
, and
Cabeza
,
L. F.
,
2012
, “
Improving Thermal Performance of Freezers Using Phase Change Materials
,”
Int. J. Refrig.
,
35
(
4
), pp.
984
991
.
12.
Kürklü
,
A.
,
1998
, “
Energy Storage Applications in Greenhouses by Means of Phase Change Materials (PCMs): A Review
,”
Renew. Energy
,
13
(
1
), pp.
89
103
.
13.
Carbonari
,
A.
,
De Grassi
,
M.
,
Di Perna
,
C.
, and
Principi
,
P.
,
2006
, “
Numerical and Experimental Analyses of PCM Containing Sandwich Panels for Prefabricated Walls
,”
Energy Build.
,
38
(
5
), pp.
472
483
.
14.
Showalter
,
S. K.
,
Pacheco
,
J. E.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
.”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
15.
Mishra
,
A.
,
Shukla
,
A.
, and
Sharma
,
A.
,
2015
, “
Latent Heat Storage Through Phase Change Materials
,”
Resonance
,
20
(
6
), pp.
532
541
.
16.
Wang
,
Z. Y.
,
Qiu
,
F.
,
Yang
,
W. S.
, and
Zhao
,
X. D.
,
2015
, “
Applications of Solar Water Heating System With Phase Change Material
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
645
652
.
17.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renew. Sustain. Energy Rev.
,
14
(
2
), pp.
615
628
.
18.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.
19.
Abhat
,
A.
,
Aboul-Enein
,
S.
, and
Malatidis
,
N. A.
,
1981
, “Heat-of-Fusion Storage Systems for Solar Heating Applications,”
Thermal Storage of Solar Energy
,
Springer
,
Dordrecht
, pp.
157
171
.
20.
Sari
,
A.
,
2012
, “
Thermal Energy Storage Properties of Mannitol-Fatty Acid Esters as Novel Organic Solid–Liquid Phase Change Materials
,”
Energy Convers. Manage.
,
64
, pp.
68
78
.
21.
Rozanna
,
D.
,
Chuah
,
T. G.
,
Salmiah
,
A.
,
Choong
,
T. S. Y.
, and
Sa’ari
,
M.
,
2005
, “
Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review
,”
Int. J. Green Energy
,
1
(
4
), pp.
495
513
.
22.
Roxas-Dimaano
,
M. N.
, and
Watanabe
,
T.
,
2002
, “
The Capric and Lauric Acid Mixture With Chemical Additives as Latent Heat Storage Materials for Cooling Application
,”
Energy
,
27
(
9
), pp.
869
888
.
23.
Shin
,
B. C.
,
Kim
,
S. D.
, and
Won-Hoon
,
P.
,
1989
, “
Phase Separation and Supercooling of a Latent Heat-Storage Material
,”
Energy
,
14
(
12
), pp.
921
930
.
24.
Wang
,
W.
,
Yang
,
X.
,
Fang
,
Y.
,
Ding
,
J.
, and
Yan
,
J.
,
2009
, “
Enhanced Thermal Conductivity and Thermal Performance of Form-Stable Composite Phase Change Materials by Using β-Aluminum Nitride
,”
Appl. Energy
,
86
(
7
), pp.
1196
1200
.
25.
Choi
,
J. C.
,
Kim
,
S. D.
, and
Han
,
G. Y.
,
1996
, “
Heat Transfer Characteristics in Low-Temperature Latent Heat Storage Systems Using Salt-Hydrates at Heat Recovery Stage
,”
Sol. Energy Mater. Sol. Cells
,
40
(
1
), pp.
71
87
.
26.
Porisini
,
F. C.
,
1988
, “
Salt Hydrates Used for Latent Heat Storage: Corrosion of Metals and Reliability of Thermal Performance
,”
Sol. Energy
,
41
(
2
), pp.
193
197
.
27.
El-Sebaii
,
A. A.
,
Al-Amir
,
S.
,
Al-Marzouki
,
F. M.
,
Faidah
,
A. S.
,
Al-Ghamdi
,
A. A.
, and
Al-Heniti
,
S.
,
2009
, “
Fast Thermal Cycling of Acetanilide and Magnesium Chloride Hexahydrate for Indoor Solar Cooking
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3104
3111
.
28.
Li
,
J.-H.
,
Zhang
,
G.-E.
, and
Wang
,
J.-Y.
,
1991
, “
Investigation of a Eutectic Mixture of Sodium Acetate Trihydrate and Urea as Latent Heat Storage
,”
Sol. Energy
,
47
(
6
), pp.
443
445
.
29.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Tyagi
,
V. V.
,
Metselaar
,
H. S. C.
, and
Sandaran
,
S. C.
,
2015
, “
Developments in Organic Solid–Liquid Phase Change Materials and Their Applications in Thermal Energy Storage
,”
Energy Convers. Manage.
,
95
(
Supplement C
), pp.
193
228
.
30.
Liu
,
C.
,
Rao
,
Z.
,
Zhao
,
J.
,
Huo
,
Y.
, and
Li
,
Y.
,
2015
, “
Review on Nanoencapsulated Phase Change Materials: Preparation, Characterization and Heat Transfer Enhancement
,”
Nano Energy
,
13
(
Supplement C
), pp.
814
826
.
31.
Khadiran
,
T.
,
Hussein
,
M. Z.
,
Zainal
,
Z.
, and
Rusli
,
R.
,
2015
, “
Encapsulation Techniques for Organic Phase Change Materials as Thermal Energy Storage Medium: A Review
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
78
98
.
32.
Kant
,
K.
,
Shukla
,
A.
, and
Sharma
,
A.
,
2017
, “
Advancement in Phase Change Materials for Thermal Energy Storage Applications
,”
Sol. Energy Mater. Sol. Cells
,
172
, pp.
82
92
.
33.
Cabeza
,
L. F.
,
2014
,
Advances in Thermal Energy Storage Systems: Methods and Applications
,
Elsevier
,
New York
.
34.
Erek
,
A.
,
İlken
,
Z.
, and
Acar
,
M. A.
,
2005
, “
Experimental and Numerical Investigation of Thermal Energy Storage With a Finned Tube
,”
Int. J. Energy Res.
,
29
(
4
), pp.
283
301
.
35.
Lacroix
,
M.
,
1993
, “
Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Sol. Energy
,
50
(
4
), pp.
357
367
.
36.
Cao
,
Y.
, and
Faghri
,
A.
,
1991
, “
Performance Characteristics of a Thermal Energy Storage Module: A Transient PCM/Forced Convection Conjugate Analysis
,”
Int. J. Heat Mass Transf.
,
34
(
1
), pp.
93
101
.
37.
Ismail
,
K.
, and
Alves
,
C. L. F.
,
1986
, “
Analysis of the Shell-and-Tube PCM Storage System
,”
8th International Heat Transfer Conference
,
San Francisco, CA
,
Aug. 17–22
.
38.
da Cunha
,
J. P.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review
,”
Appl. Energy
,
177
, pp.
227
238
.
39.
Zhao
,
B. C.
,
Cheng
,
M. S.
,
Liu
,
C.
, and
Dai
,
Z. M.
,
2017
, “
Cyclic Thermal Characterization of a Molten-Salt Packed-Bed Thermal Energy Storage for Concentrating Solar Power
,”
Appl. Energy
,
195
, pp.
761
773
.
40.
Vyshak
,
N. R.
, and
Jilani
,
G.
,
2007
, “
Numerical Analysis of Latent Heat Thermal Energy Storage System
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2161
2168
.
41.
Tay
,
N. H. S.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2012
, “
An Effectiveness-NTU Technique for Characterising Tube-in-Tank Phase Change Thermal Energy Storage Systems
,”
Appl. Energy
,
91
(
1
), pp.
309
319
.
42.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Numerical Study of PCM Solidification in a Triplex Tube Heat Exchanger With Internal and External Fins
,”
Int. J. Heat Mass Transf.
,
61
(
Supplement C
), pp.
684
695
.
43.
Nomura
,
T.
,
Tsubota
,
M.
,
Oya
,
T.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2013
, “
Heat Storage in Direct-Contact Heat Exchanger With Phase Change Material
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
26
34
.
44.
Wu
,
S.-M.
, and
Fang
,
G.-Y.
,
2012
, “
The Discharging Characteristics of a Solar Thermal Storage System Using a Packed Bed With Spherical Capsules
,”
Energy Sources Part A
,
34
(
9
), pp.
858
865
.
45.
Medrano
,
M.
,
Yilmaz
,
M. O.
,
Nogues
,
M.
,
Martorell
,
I.
,
Roca
,
J.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems
,”
Appl. Energy
,
86
(
10
), pp.
2047
2055
.
46.
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2014
, “
Experimental and Computational Evolution of a Shell and Tube Heat Exchanger as a PCM Thermal Storage System
,”
Int. Commun. Heat Mass Transf.
,
50
(
Supplement C
), pp.
128
136
.
47.
Nakaso
,
K.
,
Teshima
,
H.
,
Yoshimura
,
A.
,
Nogarni
,
S.
,
Harnada
,
Y.
, and
Fukai
,
J.
,
2008
, “
Extension of Heat Transfer Area Using Carbon Fiber Cloths in Latent Heat Thermal Energy Storage Tanks
,”
Chem. Eng. Process.
,
47
(
5
), pp.
879
885
.
48.
Lecomte
,
D.
, and
Mayer
,
D.
,
1985
, “
Design Method for Sizing a Latent Heat Store/Heat Exchanger in a Thermal System
,”
Appl. Energy
,
21
(
1
), pp.
55
78
.
49.
Hirata
,
T.
, and
Nishida
,
K.
,
1989
, “
An Analysis of Heat Transfer Using Equivalent Thermal Conductivity of Liquid Phase During Melting Inside an Isothermally Heated Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
32
(
9
), pp.
1663
1670
.
50.
Hamdan
,
M. A.
, and
Elwerr
,
F. A.
,
1996
, “
Thermal Energy Storage Using a Phase Change Material
,”
Sol. Energy
,
56
(
2
), pp.
183
189
.
51.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
(
1
), pp.
51
61
.
52.
Akgün
,
M.
,
Aydin
,
O.
, and
Kaygusuz
,
K.
,
2007
, “
Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM
,”
Energy Convers. Manage.
,
48
(
2
), pp.
669
678
.
53.
Fukai
,
J.
,
Hamada
,
Y.
,
Morozumi
,
Y.
, and
Miyatake
,
O.
,
2002
, “
Effect of Carbon-Fiber Brushes on Conductive Heat Transfer in Phase Change Materials
,”
Int. J. Heat Mass Transf.
,
45
(
24
), pp.
4781
4792
.
54.
Khan
,
Z.
, and
Khan
,
Z. A.
,
2017
, “
Development in Paraffin Based Thermal Storage System Through Shell and Tubes Heat Exchanger With Vertical Fins
,”
ASME 2017 11th International Conference on Energy Sustainability
,
Charlotte, NC
,
June 26–30
, Vol.
3276
, p.
V001T11A003
.
55.
Taghilou
,
M.
,
Sefidan
,
A. M.
,
Sojoudi
,
A.
, and
Saha
,
S. C.
,
2018
, “
Solid-Liquid Phase Change Investigation Through a Double Pipe Heat Exchanger Dealing With Time-Dependent Boundary Conditions
,”
Appl. Therm. Eng.
,
128
, pp.
725
736
.
56.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Internal and External Fin Heat Transfer Enhancement Technique for Latent Heat Thermal Energy Storage in Triplex Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
53
(
1
), pp.
147
156
.
57.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2007
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules With Internal Fins
,”
Numer. Heat Transf. A Appl.
,
53
(
7
), pp.
749
765
.
58.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renew. Sustain. Energy Rev.
,
13
(
9
), pp.
2225
2244
.
59.
Fukai
,
J.
,
Kanou
,
M.
,
Kodama
,
Y.
, and
Miyatake
,
O.
,
2000
, “
Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1543
1556
.
60.
Ettouney
,
H. M.
,
Alatiqi
,
I.
,
Al-Sahali
,
M.
, and
Ahmad Al-Ali
,
S.
,
2004
, “
Heat Transfer Enhancement by Metal Screens and Metal Spheres in Phase Change Energy Storage Systems
,”
Renew. Energy
,
29
(
6
), pp.
841
860
.
61.
Mochane
,
M. J.
, and
Luyt
,
A. S.
,
2012
, “
Preparation and Properties of Polystyrene Encapsulated Paraffin Wax as Possible Phase Change Material in a Polypropylene Matrix
,”
Thermochim. Acta
,
544
(
Supplement C
), pp.
63
70
.
62.
Zhu
,
K. Y.
,
Qi
,
H. Z.
,
Wang
,
S.
,
Zhou
,
J. W.
,
Zhao
,
Y. H.
,
Su
,
J. F.
, and
Yuan
,
X. Y.
,
2012
, “
Preparation and Characterization of Melamine-Formaldehyde Resin Micro- and Nanocapsules Filled with n-Dodecane
,”
J. Macromol. Sci. B Phys.
,
51
(
10
), pp.
1976
1990
.
63.
Chen
,
Z. H.
,
Yu
,
F.
,
Zeng
,
X. R.
, and
Zhang
,
Z. G.
,
2012
, “
Preparation, Characterization and Thermal Properties of Nanocapsules Containing Phase Change Material n-Dodecanol by Miniemulsion Polymerization With Polymerizable Emulsifier
,”
Appl. Energy
,
91
(
1
), pp.
7
12
.
64.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2015
, “
Experimental and Numerical Study of Heat Transfer Performance of Nitrate/Expanded Graphite Composite PCM for Solar Energy Storage
,”
Energy Convers. Manage.
,
105
(
Supplement C
), pp.
272
284
.
65.
Qian
,
T.
,
Li
,
J.
,
Min
,
X.
,
Deng
,
Y.
,
Guan
,
W.
, and
Ning
,
L.
,
2015
, “
Diatomite: A Promising Natural Candidate as Carrier Material for Low, Middle and High Temperature Phase Change Material
,”
Energy Convers. Manage.
,
98
(
Supplement C
), pp.
34
45
.
66.
Lacroix
,
M.
,
1993
, “
Study of the Heat-Transfer Behavior of a Latent-Heat Thermal-Energy Storage Unit With a Finned Tube
,”
Int. J. Heat Mass Transf.
,
36
(
8
), pp.
2083
2092
.
67.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1999
, “
Heat Transfer Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
65
(
3
), pp.
171
180
.
68.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
,
46
(
6
), pp.
847
867
.
69.
Karaipekli
,
A.
,
Sarı
,
A.
, and
Kaygusuz
,
K.
,
2007
, “
Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications
,”
Renew. Energy
,
32
(
13
), pp.
2201
2210
.
70.
Sari
,
A.
, and
Karaipekli
,
A.
,
2009
, “
Preparation, Thermal Properties and Thermal Reliability of Palmitic Acid/Expanded Graphite Composite as Form-Stable PCM for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
93
(
5
), pp.
571
576
.
71.
Zhong
,
Y.
,
Li
,
S.
,
Wei
,
X.
,
Liu
,
Z.
,
Guo
,
Q.
,
Shi
,
J.
, and
Liu
,
L.
,
2010
, “
Heat Transfer Enhancement of Paraffin Wax Using Compressed Expanded Natural Graphite for Thermal Energy Storage
,”
Carbon
,
48
(
1
), pp.
300
304
.
72.
Tumirah
,
K.
,
Hussein
,
M. Z.
,
Zulkarnain
,
Z.
, and
Rafeadah
,
R.
,
2014
, “
Nano-Encapsulated Organic Phase Change Material Based on Copolymer Nanocomposites for Thermal Energy Storage
,”
Energy
,
66
, pp.
881
890
.
73.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2011
,
Thermal Energy Storage: Systems and Applications
,
John Wiley & Sons
,
New York
.
74.
Haillot
,
D.
,
Nepveu
,
F.
,
Goetz
,
V.
,
Py
,
X.
, and
Benabdelkarim
,
M.
,
2012
, “
High Performance Storage Composite for the Enhancement of Solar Domestic Hot Water Systems Part 2: Numerical System Analysis
,”
Sol. Energy
,
86
(
1
), pp.
64
77
.
75.
Reddy
,
K. S.
,
2007
, “
Thermal Modeling of PCM-Based Solar Integrated Collector Storage Water Heating System
,”
J. Sol. Energy Eng.
,
129
(
4
), pp.
458
464
.
76.
Najjar
,
A.
, and
Hasan
,
A.
,
2008
, “
Modeling of Greenhouse With PCM Energy Storage
,”
Energy Convers. Manage.
,
49
, pp.
3338
3342
.
77.
Öztürk
,
H. H.
,
2005
, “
Experimental Evaluation of Energy and Exergy Efficiency of a Seasonal Latent Heat Storage System for Greenhouse Heating
,”
Energy Convers. Manage.
,
46
(
9
), pp.
1523
1542
.
78.
Rabin
,
Y.
,
Bar-Niv
,
I.
,
Korin
,
E.
, and
Mikic
,
B.
,
1995
, “
Integrated Solar Collector Storage System Based on a Salt-Hydrate Phase-Change Material
,”
Sol. Energy
,
55
(
6
), pp.
435
444
.
79.
Zsembinszki
,
G.
,
Farid
,
M. M.
, and
Cabeza
,
L. F.
,
2012
, “
Analysis of Implementing Phase Change Materials in Open-Air Swimming Pools
,”
Sol. Energy
,
86
(
1
), pp.
567
577
.
80.
Sharma
,
S. D.
,
Buddhi
,
D.
,
Sawhney
,
R. L.
, and
Sharma
,
A.
,
2000
, “
Design, Development and Performance Evaluation of a Latent Heat Storage Unit for Evening Cooking in a Solar Cooker
,”
Energy Convers. Manage.
,
41
(
14
), pp.
1497
1508
.
81.
Sharma
,
S. D.
,
Iwata
,
T.
,
Kitano
,
H.
, and
Sagara
,
K.
,
2005
, “
Thermal Performance of a Solar Cooker Based on an Evacuated Tube Solar Collector With a PCM Storage Unit
,”
Sol. Energy
,
78
(
3
), pp.
416
426
.
82.
Essa
,
M. A.
,
Mostafa
,
N. H.
, and
Ibrahim
,
M. M.
,
2018
, “
An Experimental Investigation of the Phase Change Process Effects on the System Performance for the Evacuated Tube Solar Collectors Integrated With PCMs
,”
Energy Convers. Manage.
,
177
, pp.
1
10
.
83.
Tan
,
F. L.
, and
Fok
,
S. C.
,
2006
, “
Cooling of Helmet With Phase Change Material
,”
Appl. Therm. Eng.
,
26
(
17
), pp.
2067
2072
.
84.
Fang
,
G.
,
Li
,
H.
, and
Xu
,
X.
,
2003
, “
Study on Thermal Properties of a New Phase Change Cool Storage Material
,” ,
4
, pp.
147
149
.
85.
Bendic
,
R.
, and
Amza
,
G.
,
2012
, “
Use of Encapsulated Butyl Stearate as a Phase Change Material for Thermal Energy Storage in Intelligent Building Walls
,”
Rev. Chim.
,
63
(
11
), pp.
1148
1151
.
86.
Nayak
,
N.
,
Abu Jarir
,
H.
, and
Al Ghassani
,
H.
,
2016
, “
Solar Cooker Study Under Oman Conditions for Late Evening Cooking Using Stearic Acid and Acetanilide as PCM Materials
,”
J. Sol. Energy Eng.
,
2016
, p.
2305875
.
87.
Junghanss
,
T.
,
Um Boock
,
A.
,
Vogel
,
M.
,
Schuette
,
D.
,
Weinlaeder
,
H.
, and
Pluschke
,
G.
,
2009
, “
Phase Change Material for Thermotherapy of Buruli Ulcer: A Prospective Observational Single Centre Proof-of-Principle Trial
,”
PLoS Negl. Trop. Dis.
,
3
(
2
), p.
e380
.
88.
Wang
,
S.
, and
Baldea
,
M.
,
2013
, “
Storage-Enhanced Thermal Management for Mobile Devices
,”
American Control Conference
,
Washington, DC
,
June 18-19
.
89.
Boulard
,
T.
,
Razafinjohany
,
E.
,
Baille
,
A.
,
Jaffrin
,
A.
, and
Fabre
,
B.
,
1990
, “
Performance of a Greenhouse Heating System With a Phase Change Material
,”
Agric. For. Meteorol.
,
52
(
3
), pp.
303
318
.
90.
Kürklü
,
A.
,
Özmerzi
,
A.
, and
Bilgin
,
S.
,
2002
, “
Thermal Performance of a Water-Phase Change Material Solar Collector
,”
Renew. Energy
,
26
(
3
), pp.
391
399
.
91.
Buddhi
,
D.
,
1997
, “
Thermal Performance of a Shell and Tube PCM Storage Heat Exchanger for Industrial Waste Heat Recovery
,”
Proceedings of the ISES 1997 Solar World Congress.
,
Taejon, South Korea
,
August 24-29
.
92.
Rubitherm GmbH
.” www.rubitherm.de. Accessed December 9, 2017.
93.
Website
.” www.cristopia.com. Accessed December 9, 2017.
94.
PCM Phase Change Material Materials Manufacturers
.” www.teappcm.com. Accessed December 9, 2017.
95.
Climator
.” http://climator.com/. Accessed December 9, 2017.
96.
Marongiu
,
M.
, “
Phase Change Materials Consulting and Thermal Design Services by PCM Thermal Solutions
.” www.pcm-solutions.com. Accessed December 9, 2017.
You do not currently have access to this content.