The installation of solar power plants is currently having a notable expansion. The results presented show that the Argentinean Andes range, from the central to northern latitudes, is an excellent region for the placement of these plants, due to the sum of different positive factors: very high mean annual solar irradiation, low ambient temperature and relative humidity, low precipitable water content, normal wind speeds, and extremely low aerosol content of the atmosphere. The proposed regions are nearby San Antonio de los Cobres and El Leoncito and are compared with two important locations where large solar power plants have been (or will be) built: a site in Africa (Ouarzazate, Morocco) and one in Asia (Dubai, Arab Emirates). We present the results of the possible production of electricity, supplying a total of about 21,000 GWh, which is 15.6% of the 2015 Argentinean electric consumption and, consequently, could reduce the emission of greenhouse gases in a total mass of 11.2 × 106 tons of CO2eq. The installation of this type of renewable power plant will contribute significantly to the Argentinean population due to frequent (mainly summer) cutoff of electric power supply and, in particular, to isolated (low income) populations leaving in the Argentinean Andes range.

References

References
1.
IEA
,
2017
, “
Key World Energy Statistics
,” International Energy Agency, Paris, France, accessed Nov. 15, 2018, https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
2.
OLADE
,
2017
,
Anuario de Estadísticas Energéticas
,
Organización Latinoamericana de Energía
,
Quito, Ecuador
.
3.
IPCC (Intergovernmental Panel on Climate Change) Working Group I,
2013
, “Climate Change 2013: The Physical Science Basis,”
Cambridge University Press
, Cambridge, UK, accessed Nov. 15, 2018, https://www.ipcc.ch/report/ar5/wg1/
4.
García-Cascales
,
M. S.
,
Lamata
,
M. T.
, and
Sánchez-Lozano
,
J. M.
,
2012
, “
Evaluation of Photovoltaic Cells in a Multi-Criteria Decision Making Process
,”
Ann. Oper. Res.
,
199
, pp.
373
391
.
5.
Bhubaneswari
,
P.
,
Iniyan
,
S.
, and
Ranko
,
G.
,
2011
, “
A Review of Solar Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(3), pp.
1625
1636
.
6.
Piacentini
,
R. D.
,
Cede
,
A.
, and
Bárcena
,
H.
,
2003
, “
Extreme Solar Global and UV Irradiances Due to Cloud Effect Measured Near the Summer Solstice at the High Altitude Desertic Plateau Puna of Atacama
,”
J. Atmos. Sol.–Terr. Phys.
,
65
(
6
), pp.
727
731
.
7.
IRENA, 2018, “
Global Solar Atlas—ESMAP
,” based on data provided by the Energy Sector Management Assistance Program (ESMAP) via the Global Atlas for Renewable Energy, International Renewable Energy Agency (IRENA), Abu Dhabi, United Arab Emirates, accessed Nov. 14, 2018, https://irena.masdar.ac.ae/gallery/#map/3103
8.
Ebad
,
M.
, and
Grady
,
W. M.
,
2016
, “
A Cloud Shadow Model for Analysis of Solar Photovoltaic Power Variability in High-Penetration PV Distribution Networks
,”
Power and Energy Society General Meeting
, Boston, MA, July 17–21.
9.
Roy
,
J. N.
, and
Bose
,
D. N.
,
2018
,
Photovoltaic Science and Technology
,
Cambridge University Press
, Cambridge, UK, p.
281
.
10.
Liu
,
J.
,
Fang
,
W.
,
Zhang
,
X.
, and
Yang
,
2015
, “
An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data
,”
IEEE Trans. Sustainable Energy
,
6
(
2
), pp.
434
442
.
11.
Verdict Media, 2018, “
Miraah Solar Thermal Project
,” Verdict Media, London, accessed Nov. 16, 2018, http://www.power-technology.com/projects/mir910 aah-solar-thermal-project/miraah-solar-thermal-project5.html
12.
Gambetta
,
P.
, and
Doña
,
P. M.
,
2011
, “
Planta solar fotovoltaica Solar San Juan I: Descripción de su diseño y detalles de su construcción
,”
Cuarto Congreso Nacional–Tercer Congreso Iberoamericano Fuentes Sustentables de Energía
, HYFUSEN, Comisión Nacional de Energía Atómica e Instituto de Energía y Desarrollo Sustentable, Mar del Plata, Argentina, pp. 11–258.
13.
Belmonte
,
S.
,
Núñez
,
V.
,
Viramonte
,
J. G.
, and
Franco
,
J.
,
2009
, “
Potential Renewable Energy Resources of the Lerma Valley, Salta, Argentina for Its Strategic Territorial Planning
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1475
1484
.
14.
Piacentini
,
R. D.
,
García
,
B.
,
Micheletti
,
M. I.
,
Salum
,
G.
,
Freire
,
M.
,
Maya
,
J.
,
Mancilla
,
A.
,
Crino
,
E.
,
Mandat
,
D.
,
Pech
,
M.
, and
Bulik
,
T.
,
2016
, “
Selection of Astrophysical/Astronomical/Solar Sites at the Argentina East Andes Range Taking Into Account Atmospheric Components
,”
Adv. Space Res.
,
57
(
12
), pp.
2559
2574
.
15.
USGBC, 2018, “
Leadership in Energy and Environmental Design (LEED)
,” U.S. Green Building Council (USGBC), Washington, DC, accessed Nov. 14, 2018, http://www.usgbc.org/
16.
Bai
,
J.
,
Chen
,
X.
,
Dobermann
,
A.
,
Yang
,
H.
,
Cassman
,
K. G.
, and
Zhang
,
F.
,
2010
, “
Evaluation of NASA Satellite- and Model-Derived Weather Data for Simulation of Maize Yield Potential in China
,”
Agron. J.
,
102
(
1
), pp.
9
16
.
17.
White
,
J.
,
Hoogenboom
,
G.
,
Stackhouse
,
P. W.
, and
Hoell
,
J. M.
,
2008
, “
Evaluation of NASA Satellite- and Assimilation Model-Derived Long-Term Daily Temperature Data Over the Continental US
,”
Agric. Meteorol.
,
148
(
10
), pp.
1574
1584
.
18.
White
,
J.
,
Hoogenboom
,
G.
,
Wilkens
,
P. W.
,
Stackhouse
,
P. W.
, and
Hoell
,
J. M.
,
2011
, “
Evaluation of Satellite-Based, Modeled-Derived Daily Solar Radiation Data for the Continental United States
,”
Agron. J.
,
103
(
4
), pp.
1242
1251
.
19.
Gueymard
,
C. A.
,
1995
, “
SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment
,” University of Central Florida, Orlando, FL, Report
No. FSEC-PF-270-95
.http://www.fsec.ucf.edu/en/publications/pdf/fsec-pf-270-95.pdf
20.
Gueymard
,
C. A.
,
2012
, “
Clear-Sky Irradiance Predictions for Solar Resource Mapping and Large-Scale Applications: Improved Validation Methodology and Detailed Performance Analysis of 18 Broadband Radiative Models
,”
Sol. Energy
,
86
(
8
), pp.
2145
2169
.
21.
REINHARDT System- und Messelectronic, 2018 “
Microprocessor Weather Station MWS 4M
,” REINHARDT System- und Messelectronic, accessed Mar. 3, 2018, https://www.reinhardt-testsystem.de/english/climate_sensors/presentation_climate_sensors/praesw11.php
22.
Mandat
,
D.
,
Miroslav
,
P.
,
Miroslav
,
H.
,
Schovanek
,
Prouza
,
M.
,
Travnicek
,
P.
,
Janecek
,
P.
,
Ebr
,
J.
,
Doro
,
M.
, and
Gaug
,
M.
,
for the CTA Consortium
,
2015
, “
All Sky Camera for the CTA Atmospheric Calibration Work Package
,”
EPJ Web Conf.
,
89
, p. 03007.
23.
GRIMM Aerosol Technik, 2018, “
Portable Laser Aerosol Spectrometer and Dust Monitor Manual, Model 1.108/1.109
,” GRIMM Aerosol Technik, Ainring, Germany, accessed Dec. 27, 2018, https://www.wmo-gaw-wcc-aerosol-physics.org/files/opc-grimm-model--1.108-and-1.109.pdf
24.
National Oceanic and Atmospheric Administration, 2018 “
NOAA Solar Calculator
,” Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, accessed Nov. 15, 2018, https://www.esrl.noaa.gov/gmd/grad/solcalc
25.
Holben
,
B. N.
,
Eck
,
T. F.
,
Slutsker
,
I.
,
Tanre
,
D.
,
Buis
,
J. P.
,
Setzer
,
A.
,
Vermote
,
E.
,
Reagan
,
J. A.
,
Kaufman
,
Y.
,
Nakajima
,
T.
,
Lavenu
,
F.
,
Jankowiak
,
I.
, and
Smirnov
,
A.
,
2018
, “
AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization
,”
Rem. Sens. Environ.
,
66
(
1
), pp.
1
16
.https://arizona.pure.elsevier.com/en/publications/aeronet-a-federated-instrument-network-and-data-archive-for-aeros
26.
Hsu
,
C. N.
,
Sayer
,
A. M.
,
Jeong
,
M.-J.
, and
Bettenhausen
,
C.
, 2013, “
SeaWiFS Deep Blue Aerosol Optical Depth and Angstrom Exponent Daily Level 3 Data Gridded at 0.5 Degrees V004
,” Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, accessed Feb. 3, 2018, https://disc.gsfc.nasa.gov/datasets/SWDB_L305_V004/summary?keywords=SWDB_L305
27.
NASA, 2018, “
Giovanni
,” NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed Feb. 10, 2018, https://giovanni.gsfc.nasa.gov/giovanni/
28.
Verdict Media, 2018, “
Noor Ouarzazate Solar Complex
,” Verdict Media, London, accessed July 10, 2018, https://www.power-technology.com/projects/noor-ouarzazate-solar-complex/
29.
DEWA, 2018, “
Mohammed bin Rashid Al Maktoum Solar Park
,” Dubai Electricity and Water Authority (DEWA), Government of Dubai, accessed July 7, 2018, https://www.dewa.gov.ae/en/customer/innovation/renewable-energy/mohammed-bin-rashid-al-maktoum-solar-park
30.
Della Ceca
,
L.
,
Michelletti
,
M.
,
Freire
,
M.
,
García
,
B.
, and
Piacentini
,
R.
,
2017
, “
SO2 and Aerosol Evolution Over the Very Clear Atmosphere at the Argentinean Andes Range Sites of San Antonio de los Cobres and El Leoncito
,”
Proceedings 2017
,
1
(5), p. 197.
31.
Margulis
,
D.
,
2018
, “
The Photovoltaic Solar Generation and the Saving in Power That Produce the Technology
,” Energía Estratégica accessed July 7, 2018, www.energiaestrategica.com/la-generacion-solar-fotovoltaica-y-los-ahorros-de-potencia-que-genera-la-tecnologia
32.
Myhre
,
G.
,
Shindell
,
D.
,
Bréon
,
F.-M.
,
Collins
,
W.
,
Fuglestvedt
,
J.
,
Huang
,
J.
,
Koch
,
D.
,
Lamarque
,
J.-F.
,
Lee
,
D.
,
Mendoza
,
B.
,
Nakajima
,
T.
,
Robock
,
A.
,
Stephens
,
G.
,
Takemura
,
T.
, and
Zhang
,
H.
, 2013, “
Anthropogenic and Natural Radiative Forcing
,”
Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
T. F.
Stocker
,
D.
Qin
,
G.-K.
Plattner
,
M.
Tignor
,
S. K.
Allen
,
J.
Boschung
,
A.
Nauels
,
Y.
Xia
,
V.
Bex
, and
P. M.
Midgley
, eds., Cambridge University Press, Cambridge, UK.
33.
Ministerio de Energía y Minería, 2015, “
Cálculo Del Factor de Emisión CO2 de la Red Argentina de Energía Eléctrica
,” Secretaría de Coordinación de Planeamiento Energético, Dirección Nacional de Información Energética,Tecnología de la Información.
You do not currently have access to this content.