The solar energy is a renewable source that has a great potential for conversion into thermal energy or for generation of electric power through photovoltaic panels in Brazil. Concerns about environmental impacts and the fossil resources scarcity have motivated the technological development of renewable alternatives to fill out the energy matrix. The flat-plate solar water heater is an equipment used for domestic or commercial applications to heat fluids, which can minimize the demand for electric energy and, consequently, decrease the electrical bill. However, the development of technologies to increase the conversion of solar energy into thermal energy remains a challenge in order to increase the efficiency of these devices. Thus, passive techniques to enhance heat transfer have been applied and those results seem to be promissory. Among them, delta-winglet longitudinal vortex generator (VG) is a consolidated passive technique currently applied on compact heat exchangers, although few works have been applied this technique on the solar water heater. By a computational fluid dynamics approach, in this work, we analyze the augmentation of heat transfer through delta-winglet longitudinal vortex generator inside a tube of a flat-plate solar water heater. For the Reynolds numbers 300, 600, and 900, the better ratio between the heat transfer and the pressure drop penalty is found for the attack angle of the delta-winglet of 30 deg, while the highest heat transfer was to the attack angle of 45 deg. Moreover, the first vortex generators showed significant impact only on the friction factor and could be eliminated of the solar water heater with no penalty to the heat transfer.

References

References
1.
Kemerich
,
P. da C.
,
Kemerich
,
P. D. da C.
,
Flores
,
C. E. B.
,
Borba, W. F. de
,
Silveira, R. B. da
,
França
,
J. R.
, and
Levandoski
,
N.
,
2016
, “
Paradigmas da Energia Solar No Brasil e No Mundo
,”
Electron. J. Manage. Educ. Environ. Technol.
,
20
, pp.
241
247
.https://periodicos.ufsm.br/reget/article/view/16132
2.
Kannan
,
N.
, and
Vakeesan
,
D.
,
2016
, “
Solar Energy for Future World—A Review
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
1092
1105
.
3.
Best
,
R.
, and
Burke
,
P. J.
,
2018
, “
Adoption of Solar and Wind Energy: The Roles of Carbon Pricing and Aggregate Policy Support
,”
Energy Policy
,
118
, pp.
404
417
.
4.
Silvia
,
R. M.
,
2015
, “
ENERGIA SOLAR NO BRASIL: dos incentivos aos desafios
,” Núcleo de Estudose Pesquisas da ConsultoriaLegislativa, Textos para Discussão. 166.
5.
Pereira
,
E. B.
, and
de A.R. Rüther
,
F. R. M. S .L.
, 2000, “
Brazilian Atlas of Solar Energy
,” São José dos Campos, SP, Brazil.
6.
Shukla
,
R.
,
Sumathy
,
K.
,
Erickson
,
P.
, and
Gong
,
J.
,
2013
, “
Recent Advances in the Solar Water Heating Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
173
190
.
7.
Liu
,
S.
, and
Sakr
,
M.
,
2013
, “
A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
64
81
.
8.
Rashidi
,
S.
,
Hossein Kashefi
,
M.
, and
Hormozi
,
F.
,
2018
, “
Potential Applications of Inserts in Solar Thermal Energy Systems—A Review to Identify the Gaps and Frontier Challenges
,”
Sol. Energy
,
171
, pp.
929
952
.
9.
Varun
,
M. O.
,
Garg
,
H.
,
Nautiyal
,
S.
,
Khurana
,
M. K.
, and
Shukla
,
2016
, “
Heat Transfer Augmentation Using Twisted Tape Inserts: A Review
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
193
225
.
10.
Kumar
,
A.
, and
Prasad
,
B.
,
2000
, “
Investigation of Twisted Tape Inserted Solar Water Heaters—Heat Transfer, Friction Factor and Thermal Performance Results
,”
Renewable Energy
,
19
(
3
), pp.
379
398
.
11.
Lei
,
Y.
,
Zheng
,
F.
,
Song
,
C.
, and
Lyu
,
Y.
,
2017
, “
Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
111
, pp.
299
311
.
12.
Chokphoemphun
,
S.
,
Pimsarn
,
M.
,
Thianpong
,
C.
, and
Promvonge
,
P.
,
2015
, “
Heat Transfer Augmentation in a Circular Tube With Winglet Vortex Generators
,”
Chin. J. Chem. Eng.
,
23
(
4
), pp.
605
614
.
13.
Ling Liu
,
H.
,
Li
,
H.
,
Ling He
,
Y.
, and
Tao Chen
,
Z.
,
2018
, “
Heat Transfer and Flow Characteristics in a Circular Tube Fitted With Rectangular Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
126
, pp.
989
1006
.
14.
Deshmukh
,
P. W.
,
Prabhu
,
S. V.
, and
Vedula
,
R. P.
,
2016
, “
Heat Transfer Enhancement for Laminar Flow in Tubes Using Curved Delta Wing Vortex Generator Inserts
,”
Appl. Therm. Eng.
,
106
, pp.
1415
1426
.
15.
Mirdrikvand
,
M.
,
Roozbehani
,
B.
,
Moqadam
,
S. I.
,
Roshan
,
A. C.
, and
Ramezani
,
Y.
, “
Velocity Boundary Layer Analysis of a Flat Plate Heat Exchanger in Laminar Flow: A Case Study
,”
Eng. Technol. Appl. Sci. Res.
,
2
(6), pp. 310–314.https://www.etasr.com/index.php/ETASR/article/view/251/148
16.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2017
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(7), p. 078001.
17.
Incropera
,
F.
,
Dewitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
A.
,
2002
,
Fundamentos de Transfêrencia de Calor e Massa
,
5th ed.
, Wiley, Ann Arbor, MI.
You do not currently have access to this content.