Savonius wind turbines are popular for their easy fabrication and high starting capabilities. Nevertheless, they suffer from low power coefficients, which are mainly due to a negative torque resulting from the blade moving against the upcoming wind. Numerous methods have been proposed to alleviate the negative torque, among them are modified blade profiles (twisted blades), adding flow deflectors, and valve-aided blades. In this study, the effects of adding automatic valves to a two-bladed Savonius rotor on its energy conversion efficiency are investigated numerically and experimentally. The valves are placed at three different positions: close to the rotor axis, at the blade center, and at the tip of the rotor. Results show that although adding valves can decrease the negative torque of the returning blade, they can also lead to a considerable reduction in the positive torque of the advancing blade. For the rotors in the current study, the maximum power coefficient is increased 20.8% when the valves are at the tip of the blades, while the two other cases have decreased the power coefficient of the rotor. Adding the valves to the blades does not change the tip speed ratio corresponding to the maximum power coefficient of the rotor.

References

References
1.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
2.
Kadam
,
A. A.
, and
Patil
,
S. S.
, 2013, “
A Review Study on Savonius Wind Rotors for Accessing the Power Performance
,”
J. Mech. Civ. Eng.
,
5
, pp. 18–24.https://www.researchgate.net/publication/281899860_A_Review_Study_on_Savonius_Wind_Rotors_for_Accessing_the_Power_Performance
3.
Kang
,
C.
,
Liu
,
H.
, and
Yang
,
X.
,
2014
, “
Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
499
508
.
4.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
.
5.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
227
(4), pp. 528–542.
6.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Procedia
,
141
, pp.
383
388
.
7.
Zhipeng
,
T.
,
Yingxue
,
Y.
,
Liang
,
Z.
, and
Bowen
,
Y.
,
2013
, “
A Review on the New Structure of Savonius Wind Turbines
,”
Adv. Mater. Res.
,
608–609
, pp.
467
478
.
8.
Kianifar
,
A.
, and
Anbarsooz
,
M.
,
2011
, “
Blade Curve Influences on the Performance of Savonius Rotors: Experimental and Numerical
,”
Proc. Inst. Mech. Eng., Part A
,
225
, pp.
343
350
.
9.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
10.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
.
11.
Amiri
,
M.
,
Kahrom
,
M.
, and
Kianifar
,
A.
,
2015
, “
Numerical and Experimental Investigation on Effects of the Primary and Secondary Overlaps on the Performance of Savonius Wind Turbine
,”
Modares Mech. Eng.
,
15
(
6
), pp.
123
131
.http://journals-old.modares.ac.ir/article_12656.html
12.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.
13.
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Aerodynamic Performance Evaluation of a Novel Savonius-Style Wind Turbine Under an Oriented Jet
,”
ASME
Paper No. GTINDIA2014-8152.
14.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME
Paper No. GTINDIA2014-8141.
15.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME
Paper No. OMAE2016-55095.
16.
Muscolo
,
G. G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
.
17.
Tartuferi
,
M.
,
D'Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
.
18.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage.
,
127
, pp.
43
54
.
19.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2017
, “
CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor
,”
Energy Convers. Manage.
,
144
, pp.
275
285
.
20.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
21.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
22.
Hu
,
Y.
,
Tong
,
Z.
, and
Wang
,
S.
, “
A New Type of VAWT and Blade Optimization
,”
International Technology and Innovation Conference 2009
(
ITIC
2009), Xi'an, China, Oct. 12–14, pp.
1
5
.
23.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2010
, “
The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors
,”
Renewable Energy
,
35
(
4
), pp.
821
829
.
24.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2010
, “
Optimization of Savonius Turbines Using an Obstacle Shielding the Returning Blade
,”
Renewable Energy
,
35
(
11
), pp.
2618
2626
.
25.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
.
26.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
.
27.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
28.
Shaughnessy
,
B. M.
, and
Probert
,
S. D.
,
1992
, “
Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
43
(
4
), pp.
239
249
.
29.
Shikha
,
Bhatti
,
T. S.
, and
Kothari
,
D. P.
,
2003
, “
Wind Energy Conversion Systems as a Distributed Source of Generation
,”
J. Energy Eng.
,
129
(
3
), pp.
69
80
.
30.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
31.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
AbdEl-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
8
15
.
32.
Grinspan
,
A. S.
,
Saha
,
U. K.
, and
Mahanta
,
P.
,
2004
, “
Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor
,”
Int. Energy J.
,
5
(
1
), pp.
1
9
.http://www.rericjournal.ait.ac.th/index.php/reric/article/view/142
33.
Saha
,
U. K.
, and
Rajkumar
,
M. J.
,
2006
, “
On the Performance Analysis of Savonius Rotor With Twisted Blades
,”
Renewable Energy
,
31
(
11
), pp.
1776
1788
.
34.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renewable Energy
,
34
(
3
), pp.
521
529
.
35.
Damak
,
A.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2013
, “
Experimental Investigation of Helical Savonius Rotor With a Twist of 180°
,”
Renewable Energy
,
52
, pp.
136
142
.
36.
Anbarsooz
,
M.
,
2016
, “
Aerodynamic Performance of Helical Savonius Wind Rotors With 30° and 45° Twist Angles: Experimental and Numerical Studies
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
523
534
.
37.
Lee
,
J.-H.
,
Lee
,
Y.-T.
, and
Lim
,
H.-C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.
38.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
(
Suppl. C
), pp.
287
299
.
39.
Rajkumar
,
M. J.
, and
Saha
,
U. K.
,
2006
, “
Valve-Aided Twisted Savonius Rotor
,”
Wind Eng.
,
30
(
3
), pp.
243
254
.
40.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
41.
Plourde
,
B. D.
,
Abraham
,
J. P.
,
Mowry
,
G. S.
, and
Minkowycz
,
W. J.
,
2011
, “
An Experimental Investigation of a Large, Vertical-Axis Wind Turbine: Effects of Venting and Capping
,”
Wind Eng.
,
35
(
2
), pp.
213
222
.
42.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renewable Sustainable Energy
,
4
(
4
), p.
042703
.
43.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
44.
Amiri
,
M.
,
Teymourtash
,
A. R.
, and
Kahrom
,
M.
,
2017
, “
Experimental and Numerical Investigations on the Aerodynamic Performance of a Pivoted Savonius Wind Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
2
), pp.
87
101
.
45.
ANSYS, 2018, “
ANSYS Manual, Release 19.0,”
ANSYS
, Canonsburg, PA.
46.
Pope
,
K.
,
Rodrigues
,
V.
,
Doyle
,
R.
,
Tsopelas
,
A.
,
Gravelsins
,
R.
,
Naterer
,
G. F.
, and
Tsang
,
E.
,
2010
, “
Effects of Stator Vanes on Power Coefficients of a Zephyr Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
5
), pp.
1043
1051
.
47.
Ghatage
,
S. V.
, and
Joshi
,
J. B.
,
2012
, “
Optimisation of Vertical Axis Wind Turbine: CFD Simulations and Experimental Measurements
,”
Can. J. Chem. Eng.
,
90
(
5
), pp.
1186
1201
.
48.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2013
, “
Wind Turbine CFD Modeling Using a Correlation-Based Transitional Model
,”
Renewable Energy
,
52
, pp.
31
39
.
49.
Anbarsooz
,
M.
,
Amiri
,
M.
, and
Rashidi
,
I.
,
2019
, “
A Novel Curtain Design to Enhance the Aerodynamic Performance of Invelox: A Steady-RANS Numerical Simulation
,”
Energy
,
168
, pp.
207
221
.
50.
Anbarsooz
,
M.
,
Hesam
,
M. S.
, and
Imani
,
B. M.
,
2017
, “
Numerical Study on the Geometrical Parameters Affecting the Aerodynamic Performance of Invelox
,”
IET Renewable Power Gener.
,
11
(6), pp. 791–798.
51.
Jaohindy
,
P.
,
Ennamiri
,
H.
,
Garde
,
F.
, and
Bastide
,
A.
,
2014
, “
Numerical Investigation of Airflow Through a Savonius Rotor
,”
Wind Energy
,
17
(
6
), pp.
853
868
.
52.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
53.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
54.
Roy
,
S.
, and
Saha
,
U. K.
,
2014
, “
An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
86
, pp.
418
427
.
55.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low-Speed Wind Tunnel Testing
,
Wiley
, New York.
You do not currently have access to this content.