The growing demand for alternative technologies, of clean and sustainable nature, has fostered the development and improvement of equipment that uses solar energy for the dehydration of seeds and fruits. Such equipment has been used worldwide for hundreds of years; however, it remains uncommon in Serra Gaúcha, a region of great production of grapes and apples for natura consumption in the state of Rio Grande do Sul—Brazil. In order to investigate the economic and technical viability of solar dryers in the Serra Gaúcha, this work has as target the design, simulation, construction, and experimental analysis of an Indirect Passive Solar Dryer with Chimney. The prototype, divided into three parts: solar collector, dehydration chamber, and chimney, was built prioritizing materials of low cost, but that did not compromise its performance. The device was submitted to experiments, which observed: solar collector behavior very close to the simulated one; obtaining a coefficient of performance of 87% in the equipment; satisfactory rise in temperature at the collector outlet comparing to its inlet; and dehydration of apples with a reduction of 89% in mass with 32.78 MJ of energy delivered to the system. The prototype payback period was estimated in two years.

References

1.
Jairaj
,
K. S.
,
Singh
,
S. P.
, and
Srikant
,
K.
,
2009
, “
A Review of Solar Dryers Developed for Grape Drying
,”
Sol. Energy
,
83
(
9
), pp.
1698
1712
.
2.
Vijayavenkataraman
,
S.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2012
, “
A Review of Solar Drying Technologies
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
2652
2670
.
3.
Sharma
,
A.
,
Chen
,
C. R.
, and
Vu Lan
,
N.
,
2009
, “
Solar-Energy Drying Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1185
1210
.
4.
Belessiotis
,
V.
, and
Delyannis
,
E.
,
2011
, “
Solar Drying,” Sol. Energy
,
85
(
8
), pp.
1665
1691
.
5.
Kothekar
,
M. M.
,
Gavhad
,
A. A.
, and
Karale
,
S. R.
,
2016
, “
A Review on Solar Dehydration (dryer) System
,”
Int. J. Adv. Res. Sci. Eng.
,
5
(
10
), pp.
384
393
.http://www.ijarse.com/images/fullpdf/1476196480_502.pdf
6.
Ekechukwu
,
O. V.
, and
Norton
,
B.
,
1999
, “
Review of Solar-Energy Drying Systems—II: An Overview of Solar Drying Technology
,”
Energy Convers. Manage.
,
40
(
6
), pp.
615
655
.
7.
Gutiérrez
,
C.
,
Herrera
,
M.
,
Mansilla
,
F. E.
, and
Sisca
,
N.
,
2012
, “
Secadero Solar Indirecto de Circulación Natural, Para Hierbas Aromáticas, Frutas y Verduras em La Ciudad de Pico Truncado
,”
ASADES—Avances en Energías Renovables y Medio Ambiente
,
16
, pp.
02.1
02.7
.
8.
Salaudeen
,
O.
,
2011
,
Design, Construction and Testing of a Solar Dryer
,
University of Agriculture
,
Abeokuta, Ogun, Nigeria
.
9.
Spers
,
E. E.
, Begiato, G. F., Castro, L. T., and Neves, M. F.,
2008
, “
Mercado de Frutas Secas
,”
Mercado Negócios—Agroanalysis
, FGV, p.
1314
.
10.
Misha
,
S.
,
Mat
,
S.
,
Ruslan
,
M. H.
,
Sopian
,
K.
, and
Salleh
,
E.
,
2013
, “
Review on Application of a Tray Dryer System for Agricultural Products
,”
World Appl. Sci. J.
,
22
(3), pp.
424
433
.
11.
Duran
,
G.
,
Condorí
,
M.
, and
Altobelli
,
F.
,
2015
, “
Simulation of a Passive Solar Dryer to Charqui Production Using Temperature and Pressure Networks
,”
Sol. Energy
,
119
, pp.
310
318
.
12.
Lazarides
,
H. N.
,
Katsanidis
,
E.
, and
Nickolaidis
,
A.
,
1995
, “
Mass Transfer Kinetics During Osmotic Preconcentration Aiming at Minimal Solid Uptake
,”
J. Food Eng.
,
25
(
2
), pp.
151
166
.
13.
Fox
,
R. W.
,
Pritchard
,
P. J.
, and
Mcdonald
,
A. T.
,
2008
,
Introduction to Fluid Mechanics
, 7th ed.,
Wiley
,
Hoboken, NJ
.
14.
Rossi
,
S. J.
, and
Roa
,
G.
,
1980
,
Secagem e Armazenamento de Produtos Agropecuários Com Uso de Energia Solar e Ar Natural
, (
Publicação Academia de Ciências), Secretaria da Indústria, Comércio, Ciência e Tecnologia
, Academia de Ciências do Estado de São Paulo.
15.
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Bergman
,
T. L.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.