Low distance between photovoltaic (PV) arrays can lead to the mutual shading between them. This can lead to significant power losses. Usually, these shadows can be seen in PV plants with limited land such as buildings' roof. In this paper, a PV arrays fixed reconfiguration method is presented in order to reduce the effects of one- and two-sided mutual shadings in total cross tied (TCT) arrangements. Two-sided mutual shading appears when the array is shaded in two separate areas, while there is only one shaded part in the array in one-sided mutual shading. In this method, the physical locations of the modules are rearranged without changing the electrical interconnections. To reduce the effects of these shadings, first, their important features are explained. Then, the optimal array rearrangement is determined by considering all possible mutual shadows (MSHs). In mutual shading conditions, the obtained arrangement is capable of equally dispersing shaded modules in different array rows, while there is no need to add any additional switches or sensors. Due to this equal dispersion, there is no need to use the bypass diodes for maximum power extraction in this condition. The simulation results validate the effectiveness of this method.

References

1.
Batzelis
,
E. I.
,
Papathanassiou
,
S. A.
, and
Georgilakis
,
P. S.
,
2015
, “
Energy Models for Photovoltaic Systems Under Partial Shading Conditions: A Comprehensive Review
,”
IET Renewable Power Gener.
,
9
(
4
), pp.
340
349
.
2.
Bell
,
R.
, and
Pilawa-Podgurski
,
R. C. N.
,
2015
, “
Decoupled and Distributed Maximum Power Point Tracking of Series-Connected Photovoltaic Submodules Using Differential Power Processing
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
3
(
4
), pp.
881
891
.
3.
Wang
,
Y.-J.
, and
Hsu
,
P.-C.
,
2010
, “
Analytical Modelling of Partial Shading and Different Orientation of Photovoltaic Modules
,”
IET Renewable Power Gener.
,
4
(
3
), p.
272
.
4.
Tripathy
,
M.
,
Yadav
,
S.
,
Sadhu
,
P. K.
, and
Panda
,
S. K.
,
2017
, “
Determination of Optimum Tilt Angle and Accurate Insolation of BIPV Panel Influenced by Adverse Effect of Shadow
,”
Renewable Energy
,
104
, pp.
211
223
.
5.
Nashih
,
S. K.
,
Fernandes
,
C. F.
,
Torres
,
J. N.
,
Gomes
,
J.
, and
Costa Branco
,
P. J.
,
2016
, “
Validation of a Simulation Model for Analysis of Shading Effects on Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
044503
.
6.
Mahmoud
,
Y.
, and
El-Saadany
,
E. F.
,
2015
, “
A Photovoltaic Model With Reduced Computational Time
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3534
3544
.
7.
Silverman
,
T. J.
,
Mansfield
,
L.
,
Repins
,
I.
, and
Kurtz
,
S.
,
2016
, “
Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade
,”
IEEE J. Photovolt.
,
6
(
5
), pp.
1333
1338
.
8.
Rahmann
,
C.
,
Vittal
,
V.
,
Ascui
,
J.
, and
Haas
,
J.
,
2016
, “
Mitigation Control Against Partial Shading Effects in Large-Scale PV Power Plants
,”
IEEE Trans. Sustainable Energy
,
7
(
1
), pp.
173
180
.
9.
Molenbroek
,
E.
,
Waddington
,
D. W.
, and
Emery
,
K. A.
,
1991
, “
Hot Spot Susceptibility and Testing of PV Modules
,” 22nd
IEEE
Photovoltaic Specialists Conference
, Las Vegas, NV, Oct. 7–11, pp.
547
552
.
10.
Shams El-Dein
,
M. Z.
,
Kazerani
,
M.
, and
Salama
,
M. M. A.
,
2011
, “
Novel Configurations for Photovoltaic Farms to Reduce Partial Shading Losses
,”
IEEE
Power and Energy Society General Meeting
, Detroit, MI, July 24–29, pp.
1
5
.
11.
Uno
,
M.
, and
Kukita
,
A.
,
2017
, “
Current Sensorless Equalization Strategy for a Single-Switch Voltage Equalizer Using Multi Stacked Buck–Boost Converters for Photovoltaic Modules Under Partial Shading
,”
IEEE Trans. Ind. Appl.
,
53
(
1
), pp.
420
429
.
12.
Bany
,
J.
, and
Appelbaum
,
J.
,
1987
, “
The Effect of Shading on the Design of a Field of Solar Collectors
,”
Sol. Cells
,
20
(
3
), pp.
201
228
.
13.
Kerekes
,
T.
,
Koutroulis
,
E.
,
Séra
,
D.
,
Teodorescu
,
R.
, and
Katsanevakis
,
M.
,
2013
, “
An Optimization Method for Designing Large PV Plants
,”
IEEE J. Photovolt.
,
3
(
2
), pp.
814
822
.
14.
Weinstock
,
D.
, and
Appelbaum
,
J.
,
2004
, “
Optimal Solar Field Design of Stationary Collectors
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
898
905
.
15.
Groumpos
,
P. P.
, and
Khouzam
,
K.
,
1987
, “
A Generic Approach to the Shadow Effect of Large Solar Power Systems
,”
Sol. Cells
,
22
(
1
), pp.
29
46
.
16.
Weinstock
,
D.
, and
Appelbaum
,
J.
,
2003
, “
Deployment of Collector in an Optimal Design of Solar Fields
,”
ISES Solar World Congress 2003
, Gothenburg, Sweden, June 14–19, pp. 134–139.
17.
Quaschning
,
V.
, and
Hanitsch
,
R.
,
1998
, “
Increased Energy Yield of 50% at Flat Roof and Field Installations With Optimized Module Structures
,”
Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion
, Vienna, Austria, July 6–10, pp.
1993
1996
.
18.
Kaushika
,
N. D.
, and
Gautam
,
N. K.
,
2003
, “
Energy Yield Simulations of Interconnected Solar PV Arrays
,”
IEEE Trans. Energy Convers.
,
18
(
1
), pp.
127
134
.
19.
Roman
,
E.
,
Alonso
,
R.
,
Ibanez
,
P.
,
Elorduizapatarietxe
,
S.
, and
Goitia
,
D.
,
2006
, “
Intelligent PV Module for Grid-Connected PV Systems
,”
IEEE Trans. Ind. Electron.
,
53
(
4
), pp.
1066
1073
.
20.
Lijun
,
G.
,
Dougal
,
R. A.
,
Shengyi
,
L.
, and
Iotova
,
A. P.
,
2009
, “
Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1548
1556
.
21.
Shimizu
,
T.
,
Hirakata
,
M.
,
Kamezawa
,
T.
, and
Watanabe
,
H.
,
2001
, “
Generation Control Circuit for Photovoltaic Modules
,”
IEEE Trans. Power Electron.
,
16
(
3
), pp.
293
300
.
22.
Busquets-Monge
,
S.
,
Rocabert
,
J.
,
Rodriguez
,
P.
,
Alepuz
,
S.
, and
Bordonau
,
J.
,
2008
, “
Multilevel Diode-Clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array
,”
IEEE Trans. Ind. Electron.
,
55
(
7
), pp.
2713
2723
.
23.
Karatepe
,
E.
,
Hiyama
,
T.
,
Boztepe
,
M.
, and
Çolak
,
M.
,
2008
, “
Voltage Based Power Compensation System for Photovoltaic Generation System Under Partially Shaded Insolation Conditions
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2307
2316
.
24.
Elserougi
,
A. A.
,
Diab
,
M. S.
,
Massoud
,
A. M.
,
Abdel-Khalik
,
A. S.
, and
Ahmed
,
S.
,
2015
, “
A Switched PV Approach for Extracted Maximum Power Enhancement of PV Arrays During Partial Shading
,”
IEEE Trans. Sustainable Energy
,
6
(
3
), pp.
767
772
.
25.
Belhaouas
,
N.
,
Cheikh
,
M.-S. A.
,
Agathoklis
,
P.
,
Oularbi
,
M.-R.
,
Amrouche
,
B.
,
Sedraoui
,
K.
, and
Djilali
,
N.
,
2017
, “
PV Array Power Output Maximization Under Partial Shading Using New Shifted PV Array Arrangements
,”
Appl. Energy
,
187
, pp.
326
337
.
26.
Sahu
,
H. S.
,
Nayak
,
S. K.
, and
Mishra
,
S.
,
2016
, “
Maximizing the Power Generation of a Partially Shaded PV Array
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
4
(
2
), pp.
626
637
.
27.
Rani
,
B. I.
,
Saravana Ilango
,
G.
, and
Nagamani
,
C.
,
2013
, “
Enhanced Power Generation From PV Array Under Partial Shading Conditions by Shade Dispersion Using Su Do Ku Configuration
,”
IEEE Trans. Sustainable Energy
,
4
(
3
), pp.
594
601
.
28.
Horoufiany
,
M.
, and
Ghandehari
,
R.
,
2018
, “
Optimization of the Sudoku Based Reconfiguration Technique for PV Arrays Power Enhancement Under Mutual Shading Conditions
,”
Sol. Energy
,
159
, pp.
1037
1046
.
29.
Malathy
,
S. S.
, and
Ramaprabha
,
R. R.
,
2015
, “
Performance Enhancement of Partially Shaded Solar Photovoltaic Array Using Grouping Technique
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
034505
.
30.
Shams El-Dein
,
M. Z.
,
Kazerani
,
M.
, and
Salama
,
M. M. A.
,
2013
, “
An Optimal Total Cross Tied Interconnection for Reducing Mismatch Losses in Photovoltaic Arrays
,”
IEEE Trans. Sustainable Energy
,
4
(
1
), pp.
99
107
.
31.
Srinivasa Rao
,
P.
,
Saravana Ilango
,
G.
, and
Nagamani
,
C.
,
2014
, “
Maximum Power From PV Arrays Using a Fixed Configuration Under Different Shading Conditions
,”
IEEE J. Photovolt.
,
4
(
2
), pp.
679
686
.
32.
Horoufiany
,
M.
, and
Ghandehari
,
R.
,
2017
, “
Optimal Fixed Reconfiguration Scheme for PV Arrays Power Enhancement Under Mutual Shading Conditions
,”
IET Renewable Power Gener.
,
11
(
11
), pp.
1456
1463
.
33.
Moghadam
,
H.
, and
Deymeh
,
S. M.
,
2015
, “
Determination of Optimum Location and Tilt Angle of Solar Collector on the Roof of Buildings With Regard to Shadow of Adjacent Neighbors
,”
Sustainable Cities Soc.
,
14
, pp.
215
222
.
34.
Sahu
,
H. S.
, and
Nayak
,
S. K.
,
2016
, “
Extraction of Maximum Power From a PV Array Under Non-Uniform Irradiation Conditions
,”
IEEE Trans. Electron. Devices
,
63
(
12
), pp.
4825
4831
.
35.
Romano
,
P.
, and
Cardinale
,
C. R.
,
2013
, “
Optimization of Photovoltaic Energy Production Through an Efficient Switching Matrix
,”
J. Sustainable Develop. Energy, Water Environ. Syst.
,
1
(
3
), pp.
227
236
.
You do not currently have access to this content.