In major region of the world, ample amount of fresh water is required for the drinking purpose as well as for the agricultural and industrial growth. Hence, it is necessary to investigate the alternate clean water extraction technologies to get the potable water from the saline water available at local area or inside the earth. One of the methods used to get the fresh water from the brackish water is solar distillation and the means used is called as a solar still. In the present work, single slope double basin solar still performance has been investigated with and without using Al2O3 nanoparticles at the location 20.61°N, 72.91°E. For the experimentation, two identical single slope double basin solar stills were fabricated with the same basin area. The yield of solar still, one without nanoparticles and the other with Al2O3 nanoparticles, has been measured for various weight concentrations of Al2O3 nanoparticles such as 0.01%, 0.05%, 0.10%, and 0.20%. The results show that the use of nanoparticles in solar still increases the distilled output by 17.6%, 12.3%, 7.2%, and 2.6% for weight concentrations of 0.01%, 0.05%, 0.10%, and 0.20%, respectively, in comparison to the solar still without nanoparticles.

References

References
1.
Shobha
,
B. S.
,
Watwe
,
V.
, and
Rajesh
,
A. M.
,
2012
, “
Performance Evaluation of a Solar Still Coupled to an Evacuated Tube Collector Type Solar Water Heater
,”
Int. J. Innovations Eng. Technol.
,
1
, pp.
72
84
.http://ijiet.com/wp-content/uploads/2012/08/11.pdf
2.
Madhlopa
,
A.
,
2009
, “
Development of an Advanced Passive Solar Still With Separate Condenser
,”
Ph.D. thesis
, University of Strathclyde, Glasgow, UK.
3.
World Health Organization Media Centre
,
2012
, “
Millennium Development Goal (MDG) Drinking Water Target Met
,” News Releases, Geneva, New York.
4.
WHO,
2017
, “
Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines
,” World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), Geneva, Switzerland.
5.
WHO,
2008
,
WHO Guidelines for Drinking Water Quality
(Recommendations),
3rd ed.
, Vol.
1
, World Health Organization, Geneva, Switzerland.
6.
USEPA
,
2002
, “
Standard–National Primary Drinking Water
,” Bureau of Indian Standards, New Delhi, India, Standard No. EPA 816-F-02-013.
7.
BIS
,
2012
, “
Indian Standard Drinking Water—Specifications (Second Revision)
,” Bureau of Indian Standards, New Delhi, India, Standard No.
IS 10500
. http://cgwb.gov.in/documents/wq-standards.pdf
8.
Kalogirou
,
S.
, 2009,
Solar Energy Engineering: Processes and Systems
,
1st ed.
,
Academic Press Publications
, Cambridge, UK, pp.
28
29
.
9.
Tiwari
,
G. N.
,
Sumegha
,
C.
, and
Yadav
,
Y. P.
,
1991
, “
Effect of Water Depth on the Transient Performance of a Double Basin Solar Still
,”
Energy Convers. Manage.
,
32
(
3
), pp.
293
301
.
10.
Meukam
,
P.
,
Njomo
,
D.
,
Gbane
,
A.
, and
Toure
,
S.
,
2004
, “
Experimental Optimization of a Solar Still: Application to Alcohol Distillation
,”
Chem. Eng. Process.
,
43
(
12
), pp.
1569
1577
.
11.
Dutt
,
D. K.
,
Kumar
,
A.
,
Anand
,
J. D.
, and
Tiwari
,
G. N.
,
1989
, “
Performance of a Double Basin Solar Still in the Presence of Dye
,”
Appl. Energy
,
32
(
3
), pp.
207
223
.
12.
Panchal
,
H. N.
,
2015
, “
Enhancement of Distillate Output of Double Basin Solar Still With Vacuum Tubes
,”
J. King Saud Univ., Eng. Sci.
,
27
(
2
), pp.
170
175
.
13.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Nanofluids on the Performance of Passive Double Slope Solar Still: A Comparative Study Using Characteristic Curve
,”
Desalination
,
388
, pp.
9
21
.
14.
Elango
,
T.
,
Kannan
,
A.
, and
Murugavel
,
K. K.
,
2015
, “
Performance Study on Single Basin Single Slope Solar Still With Different Water Nanofluids
,”
Desalination
,
360
, pp.
45
51
.
15.
Muhammad
,
M. J.
,
Muhammad
,
I. A.
,
CheSidik
,
N. A.
,
Afiq Witri Muhammad Yazid
,
M. N.
,
Mamat
,
R.
, and
Najafi
,
G.
,
2016
, “
The Use of Nanofluids for Enhancing the Thermal Performance of Stationary Solar Collectors: A Review
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
226
36
.
16.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultrafine Particles (dispersion of c-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
NetsyBussei
,
4
(
4
), pp.
227
232
.
17.
Das
,
S. K.
,
Petra
,
N.
, and
Roetzedl
,
W.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
780
.
18.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart.
,
5
(
1/2
), pp.
167
175
.
19.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2008
, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanopart.
,
11
(
5
), pp.
1129
1131
.
20.
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Essa
,
F. A.
,
2014
, “
Enhancement of Modified Solar Still Integrated With External Condenser Using Nanofluids: An Experimental Approach
,”
Energy Convers. Manage.
,
78
(■), pp.
493
498
.
21.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids
,”
J. Nanopart. Res.
,
12
(
3
), pp.
1015
1031
.
22.
Agarwal
,
R.
,
Verma
,
K.
,
Agrawal
,
N. K.
, and
Singh
,
R.
,
2016
, “
Sensitivity of Thermal Conductivity for Al2O3Nanofluids
,”
Exp. Therm. Fluid Sci.
, 80(C), pp. 18–26.
23.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
J. Sol. Energy
,
83
(
7
), pp.
969
977
.
24.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Parsher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
25.
Drotning
,
W. D.
,
1978
, “
Optical Properties of Solar-Absorbing Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid
,”
Sol. Energy
,
20
(
4
), pp.
313
319
.
26.
Palombo
,
N.
, and
Park
,
K.
,
2011
, “
Investigation of Dynamic Near-Field Radiation Between Quantum Dots and Plasmonic Nanoparticles for Effective Tailoring of the Solar Spectrum
,”
ASME Paper No. IMECE2011-64561
.
27.
Chamsa-ard
,
W.
,
Brundavanam
,
S.
,
Fung
,
C. C.
,
Fawcett
,
D.
, and
Poinern
,
G.
,
2017
, “
Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review
,”
Nanomaterials
,
7
, p.
131
.
28.
Goss
,
W. P.
, and
Miller
,
R. G.
,
1992
, “
Thermal Properties of Wood and Wood Products
,” Thermal Performance of the Exterior Envelopes of Buildings, Atlanta, GA, pp.
193
203
.
29.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
30.
Wang
,
X.
,
Xu
,
X.
, and
S. Choi
,
S. U.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.
31.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
32.
Kirkup
,
L.
, and
Frenkel
,
R.
,
2006
,
An Introduction to Uncertainty in Measurement Using the GUM (guide to the Expression of Uncertainty in Measurement)
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
33.
Lira
,
I.
,
2002
,
Evaluation the Measurement Uncertainty Fundamental and Practical Guidance
,
Institute of Physics Publishing
, Bristol, England.
34.
Mirzaei
,
M.
,
Hosseini
,
S. M. S.
, and
Kashkooli
,
A. M. M.
,
2018
, “
Assessment of Al2O3 Nanoparticles for the Optimal Operation of the Flat Plate Solar Collector
,”
Appl. Therm. Eng.
,
134
, pp.
68
77
.
35.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
.
36.
Kouloulias
,
K.
,
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2016
, “
Sedimentation in Nanofluids During a Natural Convection Experiment
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1193
1203
.
37.
Rajaseenivasan
,
T.
, and
Murugavel
,
K. K.
,
2013
, “
Theoretical and Experimental Investigation on Double Basin Double Slope Solar Still
,”
Desalination
,
319
, pp.
25
32
.
38.
Sahota
,
L.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Al2O3 Nanoparticles on the Performance of Passive Double Slope Solar Still
,”
Sol. Energy
,
130
, pp.
26
72
.
You do not currently have access to this content.