The current challenge of human society is to meet the large demand of freshwater, which is depleting at a faster rate due to a rapid rise in human population and fast urbanization. Solar still is the economical way to obtain fresh water since it solely requires the energy from the sun alone for its operation, which is abundantly and freely available in nature. The major constraint in conventional solar still (CSS) is to maintain a large surface area of water with a minimum water depth. The best solution for the above constraint is to prefer inclined solar still (ISS) in which the surface area of water is large with a minimum water depth. In order to improvise the performance and efficiency of ISS, numerous works have been incorporated by increasing the free surface area of water. The distillate yield collected from the passive ISS was found as 1000–8100 mL/m2 whereas active ISS produced the distillate yield of 1045–9000 mL/day. In this review, an attempt is made to analyze the present status of different designs in ISS to motivate further research in ISS technology for meeting the demand of fresh water.

References

References
1.
Malik
,
M. A. S.
,
Tiwar
,
G. N.
,
Kumar
,
A.
, and
Sodha
,
M. S.
,
1982
,
Solar Distillation
,
Pergamon Press
,
Oxford, UK
, pp. 100–109.
2.
Abdenacer
,
P. K.
, and
Nafila
,
S.
,
2007
, “
Impact of Temperature Difference (Water Solar Collector) on Solar Still Global Efficiency
,”
Desalination
,
209
(
1–3
), pp.
298
305
.
3.
He
,
T.
, and
Yan
,
L.
,
2009
, “
Application of Alternative Energy Integration Technology in Sea Water Desalination
,”
Desalination
,
249
(
1
), pp.
104
108
.
4.
Murugavel
,
K. K.
,
Anburaj
,
P.
,
Hanson
,
R. S.
, and
Elango
,
T.
,
2013
, “
Progresses in Inclined Type Solar Stills
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
364
377
.
5.
Kaviti
,
A. K.
,
Yadav
,
A.
, and
Shukla
,
A.
,
2016
, “
Inclined Solar Still Designs: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
429
451
.
6.
Manikandan
,
V.
,
Shanmugasundaram
,
K.
,
Shanmugan
,
S.
,
Janarthanan
,
B.
, and
Chandrasekaran
,
J.
,
2013
, “
Wick Type Solar Stills: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
322
335
.
7.
Srithar
,
K.
, and
Rajaseenivasan
,
T.
,
2018
, “
Recent Fresh Water Augmentation Techniques in Solar Still and HDH Desalination—A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
629
644
.
8.
Nayi
,
K. H.
, and
Modi
,
K. V.
,
2018
, “
Pyramid Solar Still: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
136
148
.
9.
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2015
, “
Techniques Used to Improve the Performance of the Stepped Solar Still—A Review
,”
Renewable Sustainable Energy Rev.
,
46
, pp.
178
188
.
10.
Omara
,
Z. M.
,
Kabeel
,
A. E.
, and
Abdullah
,
A. S.
,
2017
, “
A Review of Solar Still Performance With Reflectors
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
638
649
.
11.
Sharshir
,
S. W.
,
Elsheikh
,
A. H.
,
Peng
,
G.
,
Yang
,
N.
,
El-Samadony
,
M. O. A.
, and
Kabeel
,
A. E.
,
2017
, “
Thermal Performance and Exergy Analysis of Solar Stills—A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
521
544
.
12.
Sivakumar
,
V.
, and
Sundaram
,
E. G.
,
2013
, “
Improvement Techniques of Solar Still Efficiency: A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
246
264
.
13.
Elango
,
C.
,
Gunasekaran
,
N.
, and
Sampathkumar
,
K.
,
2015
, “
Thermal Models of Solar Still—A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
856
911
.
14.
Rajaseenivasan
,
T.
,
Murugavel
,
K. K.
,
Elango
,
T.
, and
Hansen
,
R. S.
,
2013
, “
A Review of Different Methods to Enhance the Productivity of the Multi-Effect Solar Still
,”
Renewable Sustainable Energy Rev.
,
17
, pp.
248
259
.
15.
Ranjan
,
K. R.
, and
Kaushik
,
S. C.
,
2013
, “
Energy, Exergy and Thermo-Economic Analysis of Solar Distillation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
27
, pp.
709
723
.
16.
Durkaieswaran
,
P.
, and
Murugavel
,
K. K.
,
2015
, “
Various Special Designs of Single Basin Passive Solar Still—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
1048
1060
.
17.
El-Sebaii
,
A. A.
, and
El-Bialy
,
E.
,
2015
, “
Advanced Designs of Solar Desalination Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
1198
1212
.
18.
Panchal
,
H. N.
, and
Patel
,
S.
,
2017
, “
An Extensive Review on Different Design and Climatic Parameters to Increase Distillate Output of Solar Still
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
750
758
.
19.
Samee
,
M. A.
,
Mirza
,
U. K.
,
Majeed
,
T.
, and
Ahmad
,
N.
,
2007
, “
Design and Performance of a Simple Single Basin Solar Still
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
543
549
.
20.
Kumar
,
P. V.
,
Kumar
,
A.
,
Prakash
,
O.
, and
Kaviti
,
A. K.
,
2015
, “
Solar Stills System Design: A Review
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
153
181
.
21.
Manokar
,
A. M.
,
Murugavel
,
K. K.
, and
Esakkimuthu
,
G.
,
2014
, “
Different Parameters Affecting the Rate of Evaporation and Condensation on Passive Solar Still—A Review
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
309
322
.
22.
Muftah
,
A. F.
,
Alghoul
,
M. A.
,
Fudholi
,
A.
,
Abdul-Majeed
,
M. M.
, and
Sopian
,
K.
,
2014
, “
Factors Affecting Basin Type Solar Still Productivity: A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
430
447
.
23.
Velmurugan
,
V.
, and
Srithar
,
K.
,
2011
, “
Performance Analysis of Solar Stills Based on Various Factors Affecting the Productivity—A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1294
1304
.
24.
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
,
Nagarajan
,
P. K.
,
Subramani
,
J.
,
Arunkumar
,
T.
,
Mageshbabu
,
D.
,
Madhu
,
B.
,
Bharathwaaj
,
R.
, and
Prakash
,
N.
,
2017
, “
A Review of Integrating Solar Collectors to Solar Still
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1069
1097
.
25.
Sampathkumar
,
K.
,
Arjunan
,
T. V.
,
Pitchandi
,
P.
, and
Senthilkumar
,
P.
,
2010
, “
Active Solar Distillation—A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
14
(
6
), pp.
1503
1526
.
26.
Chandrashekara
,
M.
, and
Yadav
,
A.
,
2017
, “
Water Desalination System Using Solar Heat: A Review
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
1308
1330
.
27.
Manokar
,
A. M.
,
Winston
,
D. P.
,
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
, and
Arunkumar
,
T.
, 2018, “
Different Parameter and Technique Affecting the Rate of Evaporation on Active Solar Still—A Review
,”
Heat Mass Transfer
,
54
(3), pp. 593–630.
28.
Manokar
,
A. M.
,
Winston
,
D. P.
,
Kabeel
,
A. E.
,
El-Agouz
,
S. A.
,
Sathyamurthy
,
R.
,
Arunkumar
,
T.
,
Madhu
,
B.
, and
Ahsan
,
A.
,
2018
, “
Integrated PV/T Solar Still—A Mini Review
,”
Desalination
,
435
, pp. 140–151.
29.
Egelioglu
,
F.
,
Agboola
,
P. O.
, and
Madani
,
S. S.
,
2013
, “
Improved Inclined Solar Water Desalination System
,”
J. MacroTrends Appl. Sci.
,
1
(1), pp.
67
88
.
30.
El-Agouz
,
S. A.
,
El-Samadony
,
Y. A. F.
, and
Kabeel
,
A. E.
,
2015
, “
Performance Evaluation of a Continuous Flow Inclined Solar Still Desalination System
,”
Energy Convers. Manage.
,
101
, pp.
606
615
.
31.
Aybar
,
H. Ş.
,
Irani
,
F.
, and
Arslan
,
M.
,
2016
, “
Performance Analysis of Single and Double Basin-Inclined Solar Water Distillation Systems With and Without Black-Fleece Wick
,”
Desalin. Water Treat.
,
57
(
37
), pp.
17167
17181
.
32.
Sathyamurthy
,
R.
,
Samuel
,
D. H.
, and
Nagarajan
,
P. K.
,
2016
, “
Theoretical Analysis of Inclined Solar Still With Baffle Plates for Improving the Fresh Water Yield
,”
Process Saf. Environ. Prot.
,
101
, pp.
93
107
.
33.
Nagarajan
,
P. K.
,
El-Agouz
,
S. A.
,
Harris Samuel
,
D. G.
,
Edwin
,
M.
,
Madhu
,
B.
,
Ravishankar Sathyamurthy
, and
Bharathwaaj
,
R.
,
2017
, “
Analysis of an Inclined Solar Still With Baffles for Improving the Yield of Fresh Water
,”
Process Saf. Environ. Prot.
,
105
, pp.
326
337
.
34.
Alaudeen
,
A.
,
Johnson
,
K.
,
Ganasundar
,
P.
,
Abuthahir
,
A. S.
, and
Srithar
,
K.
,
2014
, “
Study on Stepped Type Basin in a Solar Still
,”
J. King Saud Univ., Eng. Sci.
,
26
(
2
), pp.
176
183
.
35.
El-Agouz
,
S. A.
,
2014
, “
Experimental Investigation of Stepped Solar Still With Continuous Water Circulation
,”
Energy Convers. Manage.
,
86
, pp.
186
193
.
36.
El-Samadony
,
Y. A. F.
, and
Kabeel
,
A. E.
,
2014
, “
Theoretical Estimation of the Optimum Glass Cover Water Film Cooling Parameters Combinations of a Stepped Solar Still
,”
Energy
,
68
, pp.
744
750
.
37.
El-Samadony
,
Y. A. F.
,
El-Maghlany
,
W. M.
, and
Kabeel
,
A. E.
,
2016
, “
Influence of Glass Cover Inclination Angle on Radiation Heat Transfer Rate Within Stepped Solar Still
,”
Desalination
,
384
, pp.
68
77
.
38.
Omara
,
Z. M.
,
Kabeel
,
A. E.
, and
Younes
,
M. M.
,
2013
, “
Enhancing the Stepped Solar Still Performance Using Internal Reflectors
,”
Desalination
,
314
, pp.
67
72
.
39.
Omara
,
Z. M.
,
Kabeel
,
A. E.
, and
Younes
,
M. M.
,
2014
, “
Enhancing the Stepped Solar Still Performance Using Internal and External Reflectors
,”
Energy Convers. Manage.
,
78
, pp.
876
881
.
40.
Muftah
,
A. F.
,
Sopian
,
K.
, and
Alghoul
,
M. A.
,
2018
, “
Performance of Basin Type Stepped Solar Still Enhanced With Superior Design Concepts
,”
Desalination
,
435
, pp. 198–209.
41.
Velmurugan
,
V.
,
Kumar
,
K. N.
,
Haq
,
T. N.
, and
Srithar
,
K.
,
2009
, “
Performance Analysis in Stepped Solar Still for Effluent Desalination
,”
Energy
,
34
(
9
), pp.
1179
1186
.
42.
Abujazar
,
M. S. S.
,
Fatihah
,
S.
, and
Kabeel
,
A. E.
,
2017
, “
Seawater Desalination Using Inclined Stepped Solar Still With Copper Trays in a Wet Tropical Climate
,”
Desalination
,
423
, pp.
141
148
.
43.
Abujazar
,
M. S. S.
,
Fatihah
,
S.
,
Ibrahim
,
A. I.
,
Kabeel
,
A. E.
, and
Sharil
,
S.
,
2018
, “
Productivity Modelling of a Developed Inclined Stepped Solar Still System Based on Actual Performance and Using a Cascaded Forward Neural Network Model
,”
J. Cleaner Prod.
,
170
, pp. 147–159.
44.
Sadineni
,
S. B.
,
Hurt
,
R.
,
Halford
,
C. K.
, and
Boehm
,
R. F.
,
2008
, “
Theory and Experimental Investigation of a Weir-Type Inclined Solar Still
,”
Energy
,
33
(
1
), pp.
71
80
.
45.
Tabrizi
,
F. F.
,
Dashtban
,
M.
,
Moghaddam
,
H.
, and
Razzaghi
,
K.
,
2010
, “
Effect of Water Flow Rate on Internal Heat and Mass Transfer and Daily Productivity of a Weir-Type Cascade Solar Still
,”
Desalination
,
260
(
1–3
), pp.
239
247
.
46.
Zoori
,
H. A.
,
Tabrizi
,
F. F.
,
Sarhaddi
,
F.
, and
Heshmatnezhad
,
F.
,
2013
, “
Comparison Between Energy and Exergy Efficiencies in a Weir Type Cascade Solar Still
,”
Desalination
,
325
, pp.
113
121
.
47.
Dashtban
,
M.
, and
Tabrizi
,
F. F.
,
2011
, “
Thermal Analysis of a Weir-Type Cascade Solar Still Integrated With PCM Storage
,”
Desalination
,
279
(
1–3
), pp.
415
422
.
48.
Tabrizi
,
F. F.
,
Dashtban
,
M.
, and
Moghaddam
,
H.
,
2010
, “
Experimental Investigation of a Weir-Type Cascade Solar Still With Built-In Latent Heat Thermal Energy Storage System
,”
Desalination
,
260
(
1–3
), pp.
248
253
.
49.
Sarhaddi
,
F.
,
Tabrizi
,
F. F.
,
Zoori
,
H. A.
, and
Mousavi
,
S. A. H. S.
,
2017
, “
Comparative Study of Two Weir Type Cascade Solar Stills With and Without PCM Storage Using Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
133
, pp.
97
109
.
50.
Sharon
,
H.
,
Reddy
,
K. S.
,
Krithika
,
D.
, and
Philip
,
L.
,
2017
, “
Experimental Performance Investigation of Tilted Solar Still With Basin and Wick for Distillate Quality and Enviro-Economic Aspects
,”
Desalination
,
410
, pp.
30
54
.
51.
Aybar
,
H. Ş.
,
Egelioğlu
,
F.
, and
Atikol
,
U.
,
2005
, “
An Experimental Study on an Inclined Solar Water Distillation System
,”
Desalination
,
180
(
1–3
), pp.
285
289
.
52.
Aybar
,
H. Ş.
,
2006
, “
Mathematical Modeling of an Inclined Solar Water Distillation System
,”
Desalination
,
190
(
1–3
), pp.
63
70
.
53.
Deniz
,
E.
,
2013
, “
An Investigation of Some of the Parameters Involved in Inclined Solar Distillation Systems
,”
Environ. Prog. Sustainable Energy
,
32
(
2
), pp.
350
354
.
54.
Hansen
,
R. S.
,
Narayanan
,
C. S.
, and
Murugavel
,
K. K.
,
2015
, “
Performance Analysis on Inclined Solar Still With Different New Wick Materials and Wire Mesh
,”
Desalination
,
358
, pp.
1
8
.
55.
Janarthanan
,
B.
,
Chandrasekaran
,
J.
, and
Kumar
,
S.
,
2006
, “
Performance of Floating Cum Tilted-Wick Type Solar Still With the Effect of Water Flowing Over the Glass Cover
,”
Desalination
,
190
(
1–3
), pp.
51
62
.
56.
Mahdi
,
J. T.
,
Smith
,
B. E.
, and
Sharif
,
A. O.
,
2011
, “
An Experimental Wick-Type Solar Still System: Design and Construction
,”
Desalination
,
267
(
2–3
), pp.
233
238
.
57.
Yeh
,
H. M.
, and
Ma
,
N. T.
,
1990
, “
Energy Balances for Upward-Type, Double-Effect Solar Stills
,”
Energy
,
15
(
12
), pp.
1161
1169
.
58.
Yeh
,
H. M.
, and
Chen
,
Z. F.
,
1992
, “
Experimental Studies on Wick-Type, Double-Effect Solar Distillers With Air Flow Through the Second-Effect Unit
,”
Energy
,
17
(
3
), pp.
269
273
.
59.
Yeh
,
H. M.
, and
Chen
,
Z. F.
,
1992
, “
Energy Balances in Wick-Type Double-Effect Solar Distillers With Air Flow Through the Second-Effect Unit
,”
Energy
,
17
(
12
), pp.
1239
1247
.
60.
Tiwari
,
G. N.
, and
Yadav
,
Y. P.
,
1987
, “
Comparative Designs and Long Term Performance of Various Designs of Solar Distiller
,”
Energy Convers. Manage.
,
27
(
3
), pp.
327
333
.
61.
Yadav
,
Y. P.
, and
Tiwari
,
G. N.
,
1989
, “
Demonstration Plants of Fibre Reinforced Plastic Multi Wick Solar Still: An Experimental Study
,”
Sol. Wind Technol.
,
6
(
6
), pp.
653
666
.
62.
Singh
,
A. K.
, and
Tiwari
,
G. N.
,
1992
, “
Performance Study of Double Effect Distillation in a Multi Wick Solar Still
,”
Energy Convers. Manage.
,
33
(
3
), pp.
207
214
.
63.
Singh
,
A. K.
, and
Tiwari
,
G. N.
,
1992
, “
Performance of Thermal Evaluation of Multi-Effect Distillation System
,”
Heat Recovery Syst. CHP
,
12
(
5
), pp.
445
450
.
64.
Dhiman
,
N. K.
, and
Tiwari
,
G. N.
,
1990
, “
Effect of Water Flowing Over the Glass Cover of a Multi-Wick Solar Still
,”
Energy Convers. Manage.
,
30
(
3
), pp.
245
250
.
65.
Sodha
,
M. S.
,
Kumar
,
A.
,
Tiwari
,
G. N.
, and
Tyagi
,
R. C.
,
1981
, “
Simple Multiple Wick Solar Still: Analysis and Performance
,”
Sol. Energy
,
26
(
2
), pp.
127
131
.
66.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2007
, “
Improvement of the Tilted Wick Solar Still by Using a Flat Plate Reflector
,”
Desalination
,
216
(
1–3
), pp.
139
146
.
67.
Tanaka
,
H.
,
2011
, “
Tilted Wick Solar Still With Flat Plate Bottom Reflector
,”
Desalination
,
273
(
2
), pp.
405
413
.
68.
Tanaka
,
H.
,
2013
, “
Optimum Inclination of Still and Bottom Reflector for Tilted Wick Solar Still With Flat Plate Bottom Reflector
,”
Desalin. Water Treat.
,
51
(
34–36
), pp.
6482
6489
.
69.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2009
, “
One Step Azimuth Tracking Tilted-Wick Solar Still With a Vertical Flat Plate Reflector
,”
Desalination
,
235
(
1–3
), pp.
1
8
.
70.
Sathyamurthy
,
R.
,
Nagarajan
,
P. K.
,
El-Agouz
,
S. A.
,
Jaiganesh
,
V.
, and
Khanna
,
P. S.
,
2015
, “
Experimental Investigation on a Semi-Circular Trough-Absorber Solar Still With Baffles for Fresh Water Production
,”
Energy Convers. Manage.
,
97
, pp.
235
242
.
71.
Minasian
,
A. N.
, and
Al-Karaghouli
,
A. A.
,
1995
, “
An Improved Solar Still: The Wick-Basin Type
,”
Energy Convers. Manage.
,
36
(
3
), pp.
213
217
.
72.
Eltawil
,
M. A.
, and
Zhengming
,
Z.
,
2009
, “
Wind Turbine-Inclined Still Collector Integration With Solar Still for Brackish Water Desalination
,”
Desalination
,
249
(
2
), pp.
490
497
.
73.
Naveen Kumar
,
P.
,
Harris Samuel
,
D. G.
,
Nagarajan
,
P. K.
, and
Sathyamurthy
,
R.
,
2017
, “
Theoretical Analysis of a Triangular Pyramid Solar Still Integrated to an Inclined Solar Still With Baffles
,”
Int. J. Ambient Energy
,
38
(7), pp. 694–700.
74.
Naveen Kumar
,
P.
,
Manokar
,
A.
,
M.
,
Madhu
,
B.
,
Kabeel
,
A. E.
,
Arunkumar
,
T.
,
Panchal
.,
H.
, and
Sathyamurthy
,
R.
, “
Experimental Investigation on the Effect of Water Mass in Triangular Pyramid Solar Still Integrated to Inclined Solar Still
,”
Groundwater Sustainable Dev.
,
5
, pp. 229–234.
75.
Panchal
,
H.
,
Taamneh
,
Y.
,
Sathyamurthy
,
R.
,
Kabeel
,
A. E.
,
El-Agouz
,
S. A.
,
Naveen Kumar
,
P.
,
Muthu Manokar
,
A.
,
Arunkumar
,
T.
,
Mageshbabu
,
D.
, and
Bharathwaaj
,
R.
,
2017
, “
Economic and Exergy Investigation of Triangular Pyramid Solar Still Integrated to Inclined Solar Still With Baffles
,”
Int. J. Ambient Energy
(epub).
76.
Hansen
,
R. S.
, and
Murugavel
,
K. K.
,
2017
, “
Enhancement of Integrated Solar Still Using Different New Absorber Configurations: An Experimental Approach
,”
Desalination
,
422
, pp.
59
67
.
77.
Abdullah
,
A. S.
,
2013
, “
Improving the Performance of Stepped Solar Still
,”
Desalination
,
319
, pp.
60
65
.
78.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Omara
,
Z. M.
, and
Younes
,
M. M.
,
2012
, “
Theoretical and Experimental Parametric Study of Modified Stepped Solar Still
,”
Desalination
,
289
, pp.
12
20
.
79.
Morad
,
M. M.
,
El-Maghawry
,
H. A.
, and
Wasfy
,
K. I.
,
2017
, “
A Developed Solar-Powered Desalination System for Enhancing Fresh Water Productivity
,”
Sol. Energy
,
146
, pp.
20
29
.
80.
Manokar
,
A. M.
,
Winston
,
D. P.
,
Kabeel
,
A. E.
, and
Sathyamurthy
,
R.
,
2018
, “
Sustainable Fresh Water and Power Production by Integrating PV Panel in Inclined Solar Still
,”
J. Cleaner Prod.
,
172
, pp.
2711
2719
.
81.
Manokar
,
A. M.
,
Winston
,
D. P.
,
Mondol
,
J. D.
,
Sathyamurthy
,
R.
,
Kabeel
,
A. E.
, and
Panchal
,
H.
,
2018
, “
Comparative Study of an Inclined Solar Panel Basin Solar Still in Passive and Active Mode
,”
Sol. Energy
,
169
, pp.
206
216
.
You do not currently have access to this content.