Particle-based concentrating solar power (CSP) plants have been proposed to increase operating temperature for integration with higher efficiency power cycles using supercritical carbon dioxide (sCO2). The majority of research to date has focused on the development of high-efficiency and high-temperature particle solar thermal receivers. However, system realization will require the design of a particle/sCO2 heat exchanger as well for delivering thermal energy to the power-cycle working fluid. Recent work has identified moving packed-bed heat exchangers as low-cost alternatives to fluidized-bed heat exchangers, which require additional pumps to fluidize the particles and recuperators to capture the lost heat. However, the reduced heat transfer between the particles and the walls of moving packed-bed heat exchangers, compared to fluidized beds, causes concern with adequately sizing components to meet the thermal duty. Models of moving packed-bed heat exchangers are not currently capable of exploring the design trade-offs in particle size, operating temperature, and residence time. The present work provides a predictive numerical model based on literature correlations capable of designing moving packed-bed heat exchangers as well as investigating the effects of particle size, operating temperature, and particle velocity (residence time). Furthermore, the development of a reliable design tool for moving packed-bed heat exchangers must be validated by predicting experimental results in the operating regime of interest. An experimental system is designed to provide the data necessary for model validation and/or to identify where deficiencies or new constitutive relations are needed.

References

1.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
2.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B. B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
1349
1359
.
3.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
5.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J.-L.
,
Garcia
,
R.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
(
1
), pp.
567
576
.
6.
Ho
,
C.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(
1
), pp.
958
969
.
7.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
8.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Energy Procedia
,
69
(
1
), pp.
748
757
.
9.
Mickley
,
H. S.
, and
Fairbanks
,
D. F.
,
1955
, “
Mechanism of Heat Transfer to Fluidized Beds
,”
AIChE J.
,
1
(
3
), pp.
374
384
.
10.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
.
11.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
12.
Denloye
,
A. O. O.
, and
Botterill
,
J. S. M.
,
1977
, “
Heat Transfer in Flowing Packed Beds
,”
Chem. Eng. Sci.
,
32
(
5
), pp.
461
465
.
13.
Spelt
,
J. K.
,
Brennen
,
C. E.
, and
Sabersky
,
R. H.
,
1982
, “
Heat Transfer to Flowing Granular Material
,”
Int. J. Heat Mass Transfer
,
25
(
6
), pp.
791
796
.
14.
Obuskovic
,
N.
,
1988
, “
Heat Transfer Between Moving Beds of Solids and a Vertical Tube
,” Ph.D. thesis, Oregon State University, Corvallis, OR.
15.
Golob
,
M. G.
,
2011
, “
Convective Heat Transfer Performance of Sand for Thermal Energy Storage
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
16.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
3
(
3
), pp.
373
381
.
17.
Vargas
,
W. L.
, and
McCarthy
,
J. J.
,
2002
, “
Conductivity of Granular Media With Stagnant Interstitial Fluids Via Thermal Particle Dynamics Simulation
,”
Heat Mass Transfer
,
45
(
24
), pp.
4847
4856
.
18.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Properties of Granular Materials as Heat Transfer and Storage Medium in CSP Application
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
38
47
.
19.
Botterill
,
J. M.
, and
Denloye
,
A. O.
,
1978
, “
A Theoretical Model of Heat Transfer to a Packed or Quiescent Fluidized Bed
,”
Chem. Eng. Sci.
,
33
(
4
), pp.
509
515
.
20.
Park
,
S. I.
,
1996
, “
Performance Analysis of a Moving-Bed Heat Exchanger in Vertical Pipes
,”
Energy
,
21
(
10
), pp.
911
918
.
21.
Henda
,
R.
, and
Falcioni
,
D. J.
,
2006
, “
Modeling of Heat Transfer in a Moving Packed Bed: Case of the Preheater in Nickel Carbonyl Process
,”
ASME J. Appl. Mech.
,
73
(
1
), pp.
47
53
.
22.
Baumann
,
T.
, and
Zunft
,
S.
,
2012
, “
Theoretical and Experimental Investigation of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Sixth European Thermal Sciences Conference
, Poitiers - Futuroscope, France, Sept. 4–7, pp.
1
8
.
23.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Edwin
,
N. L.
,
2007
,
Transport Phenomena
,
Wiley
,
New York
.
24.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
25.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
26.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
Glasgow, UK
.
27.
MathWorks
,
2016
, “MATLAB R2016b,”
MathWorks
,
Natick, MA
.
28.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(4), p. 041003.
29.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
(
1
), pp.
1015
1023
.
30.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region Form the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
31.
Vesovic
,
V.
,
Wakeham
,
W. A.
,
Olchowy
,
G. A.
,
Sengers
,
J. V.
,
Watson
,
J. T. R.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.
You do not currently have access to this content.