The effects of collector roughness shape on the performance of solar chimney power plant were investigated in this study. The roughness shapes of triangular, curved, and square grooves were chosen and were compared to smooth case. The performance parameters of solar radiation, updraft velocity, temperature distribution, static pressure, power, and Nusselt number were varied. The effects of number, position, height, and width of the grooves on the performance were investigated. The results of this investigation show that the updraft velocity with the triangular groove increases by 1.5 times compared to the smooth case at solar radiation of 1000 W/m2. At solar radiation of 1000 W/m2, the power increases by 169%, 96%, and 19% for triangular, curved, and square grooves, respectively, compared to the smooth case. Moreover, the Nusselt number values with triangular groove and curved groove enhance by 42% and 26%, respectively, compared to the smooth case. The power increases by 1.98% for three grooves instead of using one groove at higher solar radiation. Increasing the groove height by 1.7 times, the power increases by 1.03 times at higher solar radiation. The power enhancement shows less sensitivity to the change of groove width at higher solar radiation.

References

References
1.
Kaltschmitt
,
M.
,
Streicher
,
W.
, and
Wiese
,
A.
,
2007
,
Renewable Energy: Technology, Economics and Environments
, Springer-Verlag, Heidelberg, pp.
53
61
.
2.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys—Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Sol. Energy
,
2
(
1
), pp.
3
20
.
3.
Haaf
,
W.
,
1984
, “
Solar Chimneys—Part II: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sustainable Energy
,
2
(
1
), pp.
141
61
.
4.
Kalasha
,
S.
, and
Naimeh
,
W.
,
2014
, “
Experimental Investigation of a Pilot Sloped Solar Updraft Power Plant Prototype Performance throughout a Year
,”
Energy Procedia
,
50
, pp.
624
633
.
5.
Kasaeian
,
A.
,
Ghalamchi
,
M.
, and
Ghalamchi
,
M.
,
2014
, “
Simulation and Optimization of Geometric Parameters of a Solar Chimney in Tehran
,”
Energy Convers. Manage.
,
83
, pp.
28
34
.
6.
Zhou
,
X. P.
,
Yang
,
J. K.
,
Xiao
,
B.
, and
Hou
,
G. X.
,
2007
, “
Experimental Study of Temperature Field in a Solar Chimney Power Setup
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
2044
2050
.
7.
Ferreira
,
A. G.
,
Maia
,
C. B.
,
Cortez
,
M. F.
, and
Valle
,
R. M.
,
2008
, “
Technical Feasibility Assessment of a Solar Chimney for Food Drying
,”
Sol. Energy
,
82
(
3
), pp.
198
205
.
8.
Ming
,
T. Z.
,
Liu
,
W.
,
Zhou
,
Z.
, and
Pan
,
Y.
,
2009
, “
Experimental Investigation of Heat Transfer and Flow Characteristics in a Solar Chimney Prototype
,”
US-EU-China Thermophysics Conference—Renewable Energy, UECTC'09
, Beijing, China, p. 238.
9.
Motoyama
,
M.
,
Sugitani
,
K.
,
Ohya
,
Y.
,
Karasudani
,
T.
,
Nagai
,
T.
, and
Okada
,
S.
,
2014
, “
Improving the Power Generation Performance of a Solar Tower Using Thermal Updraft Wind
,”
Energy Power Eng.
,
6
(
11
), pp.
362
370
.
10.
Guo
,
P.
,
Wang
,
Y.
,
Meng
,
Q.
, and
Li
,
J.
,
2016
, “
Experimental Study on an Indoor Scale Solar Chimney Setup in an Artificial Environment Simulation Laboratory
,”
Appl. Therm. Eng.
,
26
, pp.
107
818
.
11.
Ghorbani
,
B.
,
Ghashami
,
M.
,
Ashjaee
,
M.
, and
Hosseinzadegan
,
H.
,
2015
, “
Electricity Production With Low Grade Heat in Thermal Power Plants by Design Improvement of Hybrid Dry Cooling Tower and a Solar Chimney Concept
,”
Energy Convers. Manage
,
94
, pp.
1
11
.
12.
Hu
,
S. Y.
,
Leung
,
D. Y.
, and
Chan
,
J. C.
,
2017
, “
Impact of the Geometry of Divergent Chimneys on the Power Output of a Solar Chimney Power Plant
,”
Energy
,
120
, pp.
1
11
.
13.
Hu
,
S. Y.
,
Leung
,
D. Y.
, and
Chan
,
J. C.
,
2017
, “
Numerical Modeling and Comparison of the Performance of Diffuser Type Chimneys for Power Generation
,”
Appl. Energy
,
204
, pp. 948–957.
14.
Okada
,
S.
,
Uchida
,
T.
,
Karasudani
,
T.
, and
Ohya
,
Y.
,
2015
, “
Improvement in Solar Chimney Power Generation by Using a Diffuser Tower
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031009
.
15.
Maia
,
C. B.
,
Ferreira
,
A. G.
,
Valle
,
R. M.
, and
Cortez
,
M. F. B.
,
2009
, “
Theoretical Evaluation of the Influence of Geometric Parameters and Materials on the Behavior of the Airflow in a Solar Chimney
,”
Comput. Fluids
,
38
(
3
), pp.
625
636
.
16.
Li
,
J.
,
Guo
,
H.
, and
Huang
,
S.
,
2016
, “
Power Generation Quality Analysis and Geometric Optimization for Solar Chimney Power Plants
,”
Sol. Energy
,
139
, pp.
228
237
.
17.
Zhou
,
X.
,
Yang
,
J.
,
Xiao
,
B.
, and
Hou
,
G.
,
2007
, “
Simulation of a Pilot Solar Chimney Thermal Power Generating Equipment
,”
Renewable Energy
,
32
(
10
), pp.
1637
1644
.
18.
Fasel
,
H. F.
,
Meng
,
F.
,
Shams
,
E.
, and
Gross
,
A.
,
2013
, “
CFD Analysis for Solar Chimney Power Plants
,”
Sol. Energy
,
98
, pp.
12
22
.
19.
Koonsrisuk
,
A.
,
2012
, “
Mathematical Modeling of Sloped Solar Chimney Power Plants
,”
Energy
,
47
(
1
), pp.
582
589
.
20.
Shiv
,
L.
,
Kaushik
,
S. C.
, and
Hans
,
R.
,
2016
, “
Experimental Investigation and CFD simulation Studies of a Laboratory Scale Solar Chimney for Power Generation
,”
Sustainable Energy Technol. Assess.
,
13
, pp.
13
22
.
21.
Gholamalizadeh
,
E.
, and
Kim
,
M.
,
2016
, “
CFD (Computational Fluid Dynamics) Analysis of a solar-Chimney Power Plant With Inclined Collector Roof
,”
Energy
,
107
, pp.
661
667
.
22.
Ayadi
,
A.
,
Driss
,
Z.
,
Bouabidi
,
A.
, and
Abid
,
M. S.
,
2017
, “
Experimental and Numerical Study of the Impact of the Collector Roof Inclination on the Performance of a Solar Chimney Power Plant
,”
Energy Build.
,
139
, pp.
263
276
.
23.
ANSYS, 2010,
ANSYS CFX Theory Documentation, Version 13.1
,” ANSYS,Inc. Southpointe, Canonsburg, PA.
24.
Guo
,
P.
,
Li
,
J.
, and
Wang
,
Y.
,
2014
, “
Numerical Simulations of Solar Chimney Power Plant With Radiation Model
,”
Renewable Energy
,
62
, pp.
24
30
.
25.
Chhabra
,
R. P.
,
2018
,
CRC Handbook of Thermal Engineering
,
2nd ed.
,
CRC press
,
New York
, pp.
522
524
.
26.
Schlaich
,
J.
,
Bergermann
,
R.
,
Schiel
,
W.
, and
Weinrebe
,
G.
,
2005
, “
Design of Commercial Solar Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation
,”
ASME J. Sol. Energy Eng.
,
127
(
1
), pp.
117
124
.
You do not currently have access to this content.