A solar-assisted liquid desiccant demonstration plant was built and experimentally evaluated. Humidity of the air, density of the desiccant, and all relevant mass flow rates and temperatures were measured at each inlet and outlet position. Adiabatic dehumidification experiments were performed in different seasons of the year under various ambient air conditions. The moisture removal rate m˙v, the mass balance factor κm, and the absorber effectiveness, εabs, were evaluated. An aqueous solution of LiCl was used as liquid desiccant with an initial mass fraction of about 0.4 kgLiCl/kgsol. The mass flow rate of the air through the absorber was about 1100 kg/h. The experimental results showed a reduction in the air humidity ratio in the range of 1.3–4.3 g/kg accompanied with an increase in the air temperature in the range of 3–8.5 K, depending on the inlet and operating conditions. For the air to desiccant mass flow ratio of 82, a mass fraction spread of 5.7% points in the desiccant and a volumetric energy storage capacity of 430 MJ/m3 were achieved. By operating the desiccant pump in an intermittent mode, a mass fraction spread of about 13% points in the desiccant and an energy storage capacity of about 900 MJ/m3 were reached. In addition, the experimental results were compared with results from a numerical model. The numerical model overestimates the heat and mass transfer because it assumes ideal surface wetting and uniform distribution of the circulated fluids.

References

References
1.
Misha
,
S.
,
Mat
,
S.
,
Ruslan
,
M. H.
,
Salleh
,
E.
, and
Sopian
,
K.
,
2016
, “
Performance of a Solar Assisted Desiccant Dryer for Oil Palm Fronds Drying
,”
Sol. Energy
,
132
(
216
), pp.
415
429
.
2.
Misha
,
S.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2012
, “
Review of Solid/Liquid Desiccant in the Drying Applications and Its Regeneration Methods
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
4686
4707
.
3.
Karam
,
M.
,
Petit
,
J.
,
Zimmer
,
D.
,
Djantou
,
E.
, and
Scher
,
J.
,
2016
, “
Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review
,”
J. Food Eng.
,
188
, pp.
32
49
.
4.
Badgujar
,
V.
,
2012
, “
An Experimental Investigation of Solar Dryer With Regenerative Desiccant Material for Multicrops
,”
Int. J. Eng. Res. Appl.
,
2
(
3
), pp.
3144
3149
.
5.
Misha
,
S.
,
Mat
,
S.
,
Ruslan
,
M. H.
,
Salleh
,
E.
, and
Sopian
,
K.
,
2015
, “
Performance of a Solar Assisted Desiccant Dryer for Kenaf Core Fiber Drying Under Low Solar Radiation
,”
Sol. Energy
,
112
, pp.
194
204
.
6.
Madhiyanon
,
T.
,
Adirekrut
,
S.
,
Sathitruangsak
,
P.
, and
Soponronnarit
,
S.
,
2007
, “
Integration of a Rotary Desiccant Wheel Into a Hot-Air Drying System: Drying Performance and Product Quality Studies
,”
Chem. Eng. Process.
,
46
(
4
), pp.
282
290
.
7.
Öberg
,
V.
, and
Goswami
,
D.
,
1998
, “
Experimental Study of the Heat and Mass Transfer in a Packed Bed Liquid Desiccant Air Dehumidifier
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
289
97
.
8.
Keßling
,
W.
,
Lävemann
,
E.
, and
Kapfhammer
,
C.
,
1998
, “
Energy Storage for Desiccant Cooling Systems Component Development
,”
Sol. Energy
,
64
(
4–6
), pp.
209
221
.
9.
Ertas
,
A.
,
Gandhidasan
,
P.
,
Kiris
,
I.
, and
Anderson
,
E.
,
1994
, “
Experimental Study on the Performance of a Regeneration Tower for Various Climatic Conditions
,”
Sol. Energy
,
53
(
1
), pp.
125
130
.
10.
Elsarrag
,
E.
,
2006
, “
Performance Study on a Structured Packed Liquid Desiccant Regenerator
,”
Sol. Energy
,
80
(
12
), pp.
1624
1631
.
11.
Gandhidasan
,
P.
,
2005
, “
Quick Performance Prediction of Liquid Desiccant Regeneration in a Packed Bed
,”
Sol. Energy
,
79
(
1
), pp.
47
55
.
12.
Gommed
,
K.
, and
Grossman
,
G.
,
2007
, “
Experimental Investigation of a Liquid Desiccant System for Solar Cooling and Dehumidification
,”
Sol. Energy
,
81
(
1
), pp.
131
138
.
13.
Gommed
,
K.
, and
Grossman
,
G.
,
2004
, “
A Liquid Desiccant System for Solar Cooling and Dehumidification
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
879
885
.
14.
Gommed
,
K.
,
Grossman
,
G.
, and
Ziegler
,
F.
,
2004
, “
Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
710
715
.
15.
Lowenstein
,
A.
,
2008
, “
Review of Liquid Desiccant Technology for HVAC Applications
,”
HVACR Res.
,
14
(
6
), pp.
819
839
.
16.
Lowenstein
,
A.
,
Slayzak
,
S.
,
Kozubal
,
E.
,
Feldman
,
S.
, and
Tandler
,
J.
,
2006
, “
A Zero-Carryover Liquid Desiccant Air Conditioner for Solar Applications
,”
ASME
Paper No. ISEC2006-99079.
17.
Lowenstein
,
A.
,
Slayzak
,
S.
,
Ryan
,
J.
, and
Pesaran
,
A.
,
1998
, “
Advanced Commercial Liquid Desiccant Technology Development Study
,” National Renewable Energy Laboratory, Golden, CO.
18.
Lävemann
,
E.
,
Keßling
,
W.
,
Röhle
,
B.
, and
Kink
,
C.
,
1996
, “
Klimatisierung über Sorption, Endbericht zur Phase I des Forschungsvorhabens
,” B des BMFT, Fraunhofer Instituts für Solare Energiesysteme, Freiburg und Ludwig-Maximilians-Universität München, Sektion Physik, LS Prof. Sitzmann, München, Germany, Report Nr. 032 9151.
19.
Lävemann
,
E.
,
Keßling
,
W.
, and
Peltzer
,
M.
,
1996
, “
Solarunterstützte Klimatisierung über Sorption, Endbericht zur Phase II des Forschungsvorhabens
,” F des BMBF, Bayerisches Zentrum für Angewandte Energieforschung e.V., München, Germany, Nr. 032 9151.
20.
Hublitz
,
A.
,
2008
, “
Efficient Energy Storage in Liquid Desiccant Cooling Systems
,” Ph.D. thesis, Technische Universität München, München, Germany.
21.
Abdel-Salam
,
A.
,
McNevin
,
C.
,
Crofoot
,
L.
,
Harrison
,
S.
, and
Simonson
,
C.
,
2016
, “
A Field Study of a Low-Flow Internally Cooled/Heated Liquid Desiccant Air Conditioning System: Quasi-Steady and Transient Performance
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p. 031009.
22.
Jaradat
,
M.
,
2016
, “
Construction and Analysis of Heat-and Mass Exchangers for Liquid Desiccant Systems
,” Ph.D. thesis, University of Kassel, Kassel, Germany.
23.
Román
,
F.
, and
Hensel
,
O.
,
2014
, “
Numerical Simulations and Experimental Measurements on the Distribution of Air and Drying of round Hay Bales
,”
Biosyst. Eng.
,
122
, pp.
1
15
.
24.
ASHRAE
,
1997
,
Handbook – Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
25.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
26.
Mützel
,
M.
,
2009
, “
Modellierung Eines Im Kreuzstrom Betriebenen Sorptionsreaktor Für Sorptionsgestützte Klimatisierungsanlagen
,” Masterarbeit, Maschinenbau, Universität Kassel, Institut für thermische Energietechnik, Kassel, Germany.
27.
Mesquita
,
L.
,
Harrison
,
S. J.
, and
Thomey
,
D.
,
2006
, “
Modeling of Heat and Mass Transfer in Parallel Plate Liquid-Desiccant Dehumidifiers
,”
Sol. Energy
,
80
(
11
), pp.
1475
1482
.
28.
Liu
,
X. H.
,
Zhang
,
Y.
,
Qu
,
K. Y.
, and
Jiang
,
Y.
,
2006
, “
Experimental Study on Mass Transfer Performances of Cross Flow Dehumidifier Using Liquid Desiccant
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2682
2692
.
29.
Mesquita
,
L.
,
2007
, “
Analysis of a Flat-Plate Liquid-Desiccant Dehumidifier and Regenerator
,” Ph.D. thesis, Queen's University, Kingston, ON, Canada.
You do not currently have access to this content.