Oxide particles have potential as robust heat transfer and thermal energy storage (TES) media for concentrating solar power (CSP). Particles of low-cost, inert oxides such as alumina and/or silica offer an effective, noncorrosive means of storing sensible energy at temperatures above 1000 °C. However, for TES subsystems coupled to high-efficiency, supercritical-CO2 cycles with low temperature differences for heat addition, the limited specific TES (in kJ kg−1) of inert oxides requires large mass flow rates for capture and total mass for storage. Alternatively, reactive oxides may provide higher specific energy storage (approaching 2 or more times the inert oxides) through adding endothermic reduction. Chemical energy storage through reduction can benefit from low oxygen partial pressures (PO2) sweep-gas flows that add complexity, cost, and balance of plant loads to the TES subsystem. This paper compares reactive oxides, with a focus on Sr-doped CaMnO3–δ perovskites, to low-cost alumina-silica particles for energy capture and storage media in CSP applications. For solar energy capture, an indirect particle receiver based on a narrow-channel, counterflow fluidized bed provides a framework for comparing the inert and reactive particles as a heat transfer media. Low-PO2 sweep gas flows for promoting reduction impact the techno-economic viability of TES subsystems based on reactive perovskites relative to those using inert oxide particles. This paper provides insights as to when reactive perovskites may be advantageous for TES subsystems in next-generation CSP plants.

References

References
1.
Mehos
,
M.
,
Jorgenson
,
J.
,
Denholm
,
P.
, and
Turchi
,
C.
,
2015
, “
An Assessment of the Net Value of CSP Systems Integrated With Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
2060
2071
.
2.
Forrester
,
J.
,
2014
, “
The Value of CSP With Thermal Energy Storage in Providing Grid Stability
,”
Energy Procedia
,
49
, pp.
1632
1641
.
3.
Du
,
E.
,
Zhang
,
N.
,
Hodge
,
B.-M.
,
Kang
,
C.
,
Kroposki
,
B.
, and
Xia
,
Q.
,
2018
, “
Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems
,”
Appl. Energy
,
222
, pp.
649
661
.
4.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.
5.
Stein
,
W.
, and
Buck
,
R.
,
2017
, “
Advanced Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
152
, pp.
91
105
.
6.
Turchi
,
C. S.
,
Vidal
,
J.
, and
Bauer
,
M.
,
2018
, “
Molten Salt Power Towers Operating at 600–650 Degrees C: Salt Selection and Cost Benefits
,”
Sol. Energy
,
164
, pp.
38
46
.
7.
Bauer
,
T.
,
Pfleger
,
N.
,
Breidenbach
,
N.
,
Eck
,
M.
,
Laing
,
D.
, and
Kaesche
,
S.
,
2013
, “
Material Aspects of Solar Salt for Sensible Heat Storage
,”
Appl. Energy
,
111
, pp.
1114
1119
.
8.
Fernández
,
A. G.
,
Galleguillos
,
H.
,
Fuentealba
,
E.
, and
Pérez
,
F. J.
,
2015
, “
Thermal Characterization of Hitec Molten Salt for Energy Storage in Solar Linear Concentrated Technology
,”
J. Therm. Anal. Calorim.
,
122
(
1
), pp.
3
9
.
9.
Ting Wu
,
Y.
,
Ren
,
N.
,
Wang
,
T.
, and
Fang Ma
,
C.
,
2011
, “
Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant
,”
Sol. Energy
,
85
(
9
), pp.
1957
1966
.
10.
Gomez-Vidal
,
J. C.
,
Noel
,
J.
, and
Weber
,
J.
,
2016
, “
Corrosion Evaluation of Alloys and MCrAlX Coatings in Molten Carbonates for Thermal Solar Applications
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
517
525
.
11.
Myers
,
P. D.
, and
Goswami
,
D. Y.
,
2016
, “
Thermal Energy Storage Using Chloride Salts and Their Eutectics
,”
Appl. Therm. Eng.
,
109
, pp.
889
900
.
12.
Du
,
L.
,
Ding
,
J.
,
Tian
,
H.
,
Wang
,
W.
,
Wei
,
X.
, and
Song
,
M.
,
2017
, “
Thermal Properties and Thermal Stability of the Ternary Eutectic Salt NaCl–CaCl2–MgCl2 Used in High-Temperature Thermal Energy Storage Process
,”
Appl. Energy
,
204
, pp.
1225
1230
.
13.
Liu
,
B.
,
Wei
,
X.
,
Wang
,
W.
,
Lu
,
J.
, and
Ding
,
J.
,
2017
, “
Corrosion Behavior of Ni-Based Alloys in Molten NaCl–CaCl2–MgCl2 Eutectic Salt for Concentrating Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
170
, pp.
77
86
.
14.
Ho
,
C. K.
,
2017
, “
Advances in Central Receivers for Concentrating Solar Applications
,”
Sol. Energy
,
152
(
SI
), pp.
38
56
.
15.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No.
NREL/TP-5500-67465
.https://www.nrel.gov/docs/fy17osti/67464.pdf
16.
Gomez-Vidal
,
J. C.
, and
Tirawat
,
R.
,
2016
, “
Corrosion of Alloys in a Chloride Molten Salt (NaCl–LiCl) for Solar Thermal Technologies
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
234
244
.
17.
de Miguel
,
M. T.
,
Encinas-Sanchez
,
V.
,
Lasanta
,
M. I.
,
Garcia-Martin
,
G.
, and
Perez
,
F. J.
,
2016
, “
Corrosion Resistance of HR3C to a Carbonate Molten Salt for Energy Storage Applications in CSP Plants
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
966
972
.
18.
Niedermeier
,
K.
,
Marocco
,
L.
,
Flesch
,
J.
,
Mohan
,
G.
,
Coventry
,
J.
, and
Wetzel
,
T.
,
2018
, “
Performance of Molten Sodium vs. Molten Salts in a Packed Bed Thermal Energy Storage
,”
Appl. Therm. Eng.
,
141
, pp.
368
377
.
19.
Khare
,
S.
,
Dell'Amico
,
M.
,
Knight
,
C.
, and
McGarry
,
S.
,
2013
, “
Selection of Materials for High Temperature Sensible Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
115
, pp.
114
122
.
20.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
, pp.
958
969
.
21.
Tan
,
T. D.
, and
Chen
,
Y. T.
,
2010
, “
Review of Study on Solid Particle Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
265
276
.
22.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Properties of Granular Materials as Heat Transfer and Storage Medium in CSP Application
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
38
47
.
23.
Diago
,
M.
,
Iniesta
,
A. C.
,
Soum-Glaude
,
A.
, and
Calvet
,
N.
,
2018
, “
Characterization of Desert Sand to Be Used as a High-Temperature Thermal Energy Storage Medium in Particle Solar Receiver Technology
,”
Appl. Energy
,
216
, pp.
402
413
.
24.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
1349
1359
.
25.
Nigay
,
P.-M.
,
Nzihou
,
A.
,
White
,
C. E.
, and
Soboyejo
,
W. O.
,
2017
, “
Structure and Properties of Clay Ceramics for Thermal Energy Storage
,”
J. Am. Ceram. Soc.
,
100
(
10
), pp.
4748
4759
.
26.
Li
,
B.
, and
Ju
,
F.
,
2018
, “
Thermal Stability of Granite for High Temperature Thermal Energy Storage in Concentrating Solar Power Plants
,”
Appl. Therm. Eng.
,
138
, pp.
409
416
.
27.
Anderson
,
R.
,
Shiri
,
S.
,
Bindra
,
H.
, and
Morris
,
J. F.
,
2014
, “
Experimental Results and Modeling of Energy Storage and Recovery in a Packed Bed of Alumina Particles
,”
Appl. Energy
,
119
, pp.
521
529
.
28.
Miller
,
D. C.
,
Pfutzner
,
C. J.
, and
Jackson
,
G. S.
,
2018
, “
Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
126
(
B
), pp.
730
745
.
29.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041003
.
30.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p. 021011.
31.
Martinek
,
J.
, and
Ma
,
Z.
,
2015
, “
Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p. 051008.
32.
Mehos
,
M.
,
Turchi
,
C.
,
Jorgenson
,
J.
,
Denholm
,
P.
,
Ho
,
C.
, and
Armijo
,
K.
,
2016
, “
On the Path to Sunshot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5500-65688.
33.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
34.
General Atomics
,
2011
, “
Thermochemical Heat Storage for Concentrated Solar Power
,” U. S. Department of Energy, Washington, DC, Report No. DE-FG36-08GO18145.
35.
Schrader
,
A. J.
,
De Dominicis
,
G.
,
Schieber
,
G. L.
, and
Loutzenhiser
,
P. G.
,
2017
, “
Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/COO Redox Reactions—III: Solar Thermochemical Reactor Design and Modeling
,”
Sol. Energy
,
150
, pp.
584
595
.
36.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmuecker
,
M.
, and
Sattler
,
C.
,
2014
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 1: Testing of Cobalt Oxide-Based Powders
,”
Sol. Energy
,
102
, pp.
189
211
.
37.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 4: Screening of Oxides for Use in Cascaded Thermochemical Storage Concepts
,”
Sol. Energy
,
139
, pp.
695
710
.
38.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2014
, “
Thermochemical Heat Storage Based on the Mn2O3/Mn3O4 Redox Couple: Influence of the Initial Particle Size on the Morphological Evolution and Cyclability
,”
J. Mater. Chem. A
,
2
(
45
), pp.
19435
19443
.
39.
Block
,
T.
, and
Schmücker
,
M.
,
2016
, “
Metal Oxides for Thermochemical Energy Storage: A Comparison of Several Metal Oxide Systems
,”
Sol. Energy
,
126
, pp.
195
207
.
40.
Bulfin
,
B.
,
Vieten
,
J.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles—A Review
,”
J. Mater. Chem. A
,
5
(
36
), pp.
18951
18966
.
41.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2015
, “
Improving the Thermochemical Energy Storage Performance of the Mn2O3/Mn3O4 Redox Couple by the Incorporation of Iron
,”
ChemSusChem
,
8
(
11
), pp.
1947
1954
.
42.
Carrillo
,
A. J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2016
, “
Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Phys. Chem. C
,
120
(
49
), pp.
27800
27812
.
43.
Wokon
,
M.
,
Kohzer
,
A.
, and
Linder
,
M.
,
2017
, “
Investigations on Thermochemical Energy Storage Based on Technical Grade Manganese-Iron Oxide in a Lab-Scale Packed Bed Reactor
,”
Sol. Energy
,
153
, pp.
200
214
.
44.
Wokon
,
M.
,
Block
,
T.
,
Nicolai
,
S.
,
Linder
,
M.
, and
Schmuecker
,
M.
,
2017
, “
Thermodynamic and Kinetic Investigation of a Technical Grade Manganese-Iron Binary Oxide for Thermochemical Energy Storage
,”
Sol. Energy
,
153
, pp.
471
485
.
45.
Agrafiotis
,
C.
,
Block
,
T.
,
Senholdt
,
M.
,
Tescari
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 6: Testing of Mn-Based Combined Oxides and Porous Structures
,”
Sol. Energy
,
149
, pp.
227
244
.
46.
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Miller
,
J. E.
, and
Ambrosini
,
A.
,
2015
, “
Investigation of LaxSr1–xCoyM1–yO3–δ (M = Mn, Fe) Perovskite Materials as Thermochemical Energy Storage Media
,”
Sol. Energy
,
118
, pp.
451
459
.
47.
Albrecht
,
K. J.
,
Jackson
,
G. S.
, and
Braun
,
R. J.
,
2016
, “
Thermodynamically Consistent Modeling of Redox-Stable Perovskite Oxides for Thermochemical Energy Conversion and Storage
,”
Appl. Energy
,
165
, pp.
285
296
.
48.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Braun
,
R. J.
, and
Jackson
,
G. S.
,
2016
, “
Measuring Thermochemical Energy Storage Capacity With Redox Cycles of Doped-CaMnO3
,”
ECS Trans.
,
72
(
7
), pp.
11
22
.
49.
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Miller
,
J. E.
, and
Ambrosini
,
A.
,
2016
, “
Doped Calcium Manganites for Advanced High-Temperature Thermochemical Energy Storage
,”
Int. J. Energy Res.
,
40
(
2
), pp.
280
284
.
50.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Wands
,
J. W.
,
Sanders
,
M. D.
, and
Jackson
,
G. S.
,
2017
, “
Thermochemical Energy Storage in Strontium-Doped Calcium Manganites for Concentrating Solar Power Applications
,”
Sol. Energy
,
151
, pp.
1
13
.
51.
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Kharait
,
R.
,
Sanders
,
M. D.
, and
Jackson
,
G. S.
,
2018
, “
Redox Cycles With Doped Calcium Manganites for Thermochemical Energy Storage to 1000
∘c,”
Appl. Energy
,
230
, pp.
1
18
.
52.
Bulfin
,
B.
,
Vieten
,
J.
,
Starr
,
D. E.
,
Azarpira
,
A.
,
Zachaeus
,
C.
,
Haevecker
,
M.
,
Skorupska
,
K.
,
Schmuecker
,
M.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Redox Chemistry of CaMnO3 and Ca0.8Sr0.2MnO3 Oxygen Storage Perovskites
,”
J. Mater. Chem. A
,
5
(
17
), pp.
7912
7919
.
53.
Bakken
,
E.
,
Norby
,
T.
, and
Stølen
,
S.
,
2005
, “
Nonstoichiometry and Reductive Decomposition of CaMnO3–δ
,”
Solid State Ionics
,
176
(
1–2
), pp.
217
223
.
54.
Leonidova
,
E. I.
,
Leonidov
,
I. A.
,
Patrakeev
,
M. V.
, and
Kozhevnikov
,
V. L.
,
2011
, “
Oxygen Non-Stoichiometry, High-Temperature Properties, and Phase Diagram of CaMnO3–δ
,”
J. Solid State Electrochem.
,
15
(
5
), pp.
1071
1075
.
55.
Albrecht
,
K. J.
,
Jackson
,
G. S.
, and
Braun
,
R. J.
,
2018
, “
Evaluating Thermodynamic Performance Limits of Thermochemical Energy Storage Subsystems Using Reactive Perovskite Oxide Particles for Concentrating Solar Power
,”
Sol. Energy
,
167
, pp.
179
193
.
56.
Domalski
,
E. S.
, and
Hearing
,
E. D.
,
2018
,
Condensed Phase Heat Capacity Data in NIST Chemistry WebBook
, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD.
57.
Jacob
,
K. T.
,
Kumar
,
A.
,
Rajitha
,
G.
, and
Waseda
,
Y.
,
2011
, “
Thermodynamic Data for Mn3O4, Mn2O3 And MnO2
,”
High Temp. Mater. Processes
,
30
(
4–5
), pp.
459
472
.
58.
Diago
,
M.
,
Iniesta
,
A. C.
,
Falcoz
,
Q.
,
Shamim
,
T.
, and
Calvet
,
N.
,
2015
, “
Energy and Exergy Analysis of a Novel Gravity-Fed Solid Particle Solar Receiver
,”
Energy Procedia
,
69
, pp.
812
821
.
59.
Charvin
,
P.
,
Abanades
,
S.
,
Flamant
,
G.
, and
Lemort
,
F.
,
2007
, “
Two-Step Water Splitting Thermochemical Cycle Based on Iron Oxide Redox Pair for Solar Hydrogen Production
,”
Energy
,
32
(
7
), pp.
1124
1133
.
60.
Scheffe
,
J. R.
,
McDaniel
,
A. H.
,
Allendorf
,
M. D.
, and
Weimer
,
A. W.
,
2013
, “
Kinetics and Mechanism of Solar-Thermochemical H2 Production by Oxidation of a Cobalt Ferrite-Zirconia Composite
,”
Energy Environ. Sci.
,
6
(
3
), pp.
963
973
.
61.
Marugan
,
J.
,
Botas
,
J. A.
,
Martin
,
M.
,
Molina
,
R.
, and
Herradon
,
C.
,
2012
, “
Study of the First Step of the Mn2O3/Mno Thermochemical Cycle for Solar Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
7017
7025
.
62.
Singh
,
A.
,
Tescari
,
S.
,
Lantin
,
G.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Solar Thermochemical Heat Storage Via the Co3O4/COO Looping Cycle: Storage Reactor Modelling and Experimental Validation
,”
Sol. Energy
,
144
, pp.
453
465
.
63.
Wu
,
S.
,
Zhou
,
C.
,
Doroodchi
,
E.
,
Nellore
,
R.
, and
Moghtaderi
,
B.
,
2018
, “
A Review on High-Temperature Thermochemical Energy Storage Based on Metal Oxides Redox Cycle
,”
Energy Convers. Manage.
,
168
, pp.
421
453
.
64.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmuecker
,
M.
, and
Sattler
,
C.
,
2015
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 2: Redox Oxide-Coated Porous Ceramic Structures as Integrated Thermochemical Reactors/Heat Exchangers
,”
Sol. Energy
,
114
, pp.
440
458
.
65.
Agrafiotis
,
C.
,
Becker
,
A.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 5: Testing of Porous Ceramic Honeycomb and Foam Cascades Based on Cobalt and Manganese Oxides for Hybrid Sensible/Thermochemical Heat Storage
,”
Sol. Energy
,
139
, pp.
676
694
.
66.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-Quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
67.
Tescari
,
S.
,
Singh
,
A.
,
Agrafiotis
,
C.
,
de Oliveira
,
L.
,
Breuer
,
S.
,
Schloegl-Knothe
,
B.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant
,”
Appl. Energy
,
189
, pp.
66
75
.
68.
Carrillo
,
A. J.
,
Moya
,
J.
,
Bayon
,
A.
,
Jana
,
P.
,
de la Pena O'Shea
,
V. A.
,
Romero
,
M.
,
Gonzalez-Aguilar
,
J.
,
Serrano
,
D. P.
,
Pizarro
,
P.
, and
Coronado
,
J. M.
,
2014
, “
Thermochemical Energy Storage at High Temperature Via Redox Cycles of Mn and Co Oxides: Pure Oxides Versus Mixed Ones
,”
Sol. Energy Mater. Sol. Cells
,
123
, pp.
47
57
.
69.
Andre
,
L.
,
Abanades
,
S.
, and
Cassayre
,
L.
,
2017
, “
High-Temperature Thermochemical Energy Storage Based on Redox Reactions Using Co-Fe and Mn-Fe Mixed Metal Oxides
,”
J. Solid State Chem.
,
253
, pp.
6
14
.
70.
Ryden
,
M.
,
Lyngfelt
,
A.
, and
Mattisson
,
T.
,
2011
, “
CaMn0.875Ti0.125O3 as Oxygen Carrier for Chemical-Looping Combustion With Oxygen Uncoupling (CLOU)-Experiments in a Continuously Operating Fluidized-Bed Reactor System
,”
Int. J. Greenhouse Gas Control
,
5
(
2
), pp.
356
366
.
71.
Hallberg
,
P.
,
Jing
,
D. Z.
,
Ryden
,
M.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2013
, “
Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling Experiments in a Batch Reactor Using Spray-Dried CaMn1–xMxO3–δ (M = Ti, Fe, Mg) Particles as Oxygen Carriers
,”
Energy Fuels
,
27
(
3
), pp.
1473
1481
.
72.
Arjmand
,
M.
,
Hedayati
,
A.
,
Azad
,
A.-M.
,
Leion
,
H.
,
Ryden
,
M.
, and
Mattisson
,
T.
,
2013
, “
CaxLa1–xMn1–yMyO3–δ (M = Mg, Ti, Fe, or Cu) as Oxygen Carriers for Chemical-Looping With Oxygen Uncoupling (CLOU)
,”
Energy Fuels
,
27
(
8
), pp.
4097
4107
.
73.
Pishahang
,
M.
,
Larring
,
Y.
,
McCann
,
M.
, and
Bredesen
,
R.
,
2014
, “
Ca0.9Mn0.5Ti0.5O3–δ: A Suitable Oxygen Carrier Material for Fixed-Bed Chemical Looping Combustion Under Syngas Conditions
,”
Ind. Eng. Chem. Res.
,
53
(
26
), pp.
10549
10556
.
74.
Galinsky
,
N.
,
Sendi
,
M.
,
Bowers
,
L.
, and
Li
,
F.
,
2016
, “
CaMn1–xBxO3–δ (B = Al, V, Fe, Co, and Ni) Perovskite Based Oxygen Carriers for Chemical Looping With Oxygen Uncoupling (CLOU)
,”
Appl. Energy
,
174
, pp.
80
87
.
75.
Pishahang
,
M.
,
Larring
,
Y.
,
Sunding
,
M.
,
Jacobs
,
M.
, and
Snijkers
,
F.
,
2016
, “
Performance of Perovskite-Type Oxides as Oxygen-Carrier Materials for Chemical Looping Combustion in the Presence of H2S
,”
Energy Technol.
,
4
(
10
), pp.
1305
1316
.
76.
Kharait
,
R. A.
,
2015
, “
Thermodynamics of Doped Calcium Manganite for Thermochemical Energy Storage in Concentrated Solar Power Plants
,”
Master's thesis
, Colorado School of Mines, Golden, CO.https://mountainscholar.org/bitstream/handle/11124/20114/Kharait_mines_0052N_10792.pdf?sequence=1
77.
Goldyreva
,
E. I.
,
Leonidov
,
I. A.
,
Patrakeev
,
M. V.
,
Chukin
,
A. V.
,
Leonidov
,
I. I.
, and
Kozhevnikov
,
V. L.
,
2015
, “
Oxygen Nonstoichiometry and Defect Equilibrium in Electron Doped Ca0.6–ySr0.4LayMnO3–δ
,”
J. Alloys Compd.
,
638
, pp.
44
49
.
78.
Muroyama
,
A. P.
,
Schrader
,
A. J.
, and
Loutzenhiser
,
P. G.
,
2015
, “
Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/COO Redox Reactions—II: Kinetic Analyses
,”
Sol. Energy
,
122
, pp.
409
418
.
79.
Morin
,
F.
, and
Dieckmann
,
R.
,
1990
, “
True Chemical Diffusivity and Surface Reactivity of Cobaltous Oxide
,”
J. Phys. Chem. Solids
,
51
(
3
), pp.
283
288
.
80.
Hutchings
,
K.
,
Wilson
,
M.
,
Larsen
,
P.
, and
Cutler
,
R.
,
2006
, “
Kinetic and Thermodynamic Considerations for Oxygen Absorption/Desorption Using Cobalt Oxide
,”
Solid State Ionics
,
177
(
1–2
), pp.
45
51
.
81.
Abdelmotalib
,
H. M.
,
Kim
,
J. S.
, and
Im
,
I.-T.
,
2017
, “
A Study on Heat Transfer in a Conical Fluidized-Bed Reactor With an Immersed Cylindrical Heater
,”
Numer. Heat Transfer Part A—Appl.
,
71
(
8
), pp.
855
866
.
82.
De Souza
,
R. A.
,
Kilner
,
J. A.
, and
Walker
,
J. F.
,
2000
, “
A SIMS Study of Oxygen Tracer Diffusion and Surface Exchange in La0.8Sr0.2MnO3+Delta
,”
Mater. Lett.
,
43
(
1–2
), pp.
43
52
.
83.
Petitjean
,
M.
,
Caboche
,
G.
,
Siebert
,
E.
,
Dessemond
,
L.
, and
Dufour
,
L.
,
2005
, “(
La0.8Sr0.2)(Mn1–yFey)O−3 +/-Delta Oxides for IT SOFC Cathode Materials? Electrical and Ionic Transport Properties
,”
J. Electrochem. Soc.
,
25
(
12
), pp.
2651
2654
.
84.
Albrecht
,
K. J.
,
2016
, “
Multiscale Modeling and Experimental Interpretation of Perovskite Oxide Materials in Thermochemical Energy Storage and Conversion for Application in Concentrating Solar Power
,”
Ph.D. thesis
, Colorado School of Mines, Golden, CO.https://mountainscholar.org/handle/11124/170612
85.
Imponenti
,
L.
,
2018
, “
Redox Cycles With Doped Calcium Manganites for High-Temperature Thermochemical Energy Storage in Concentrating Solar Power
,” Ph.D. thesis, Colorado School of Mines, Golden, CO.
86.
Calderon
,
A.
,
Palacios
,
A.
,
Barreneche
,
C.
,
Segarra
,
M.
,
Prieto
,
C.
,
Rodriguez-Sanchez
,
A.
, and
Ines Fernandez
,
A.
,
2018
, “
High Temperature Systems Using Solid Particles as TES and HTF Material: A Review
,”
Appl. Energy
,
213
, pp.
100
111
.
87.
Albrecht
,
K. J.
, and
Braun
,
R. J.
,
2015
, “
Thermodynamic Analysis of Non-Stoichiometric Perovskites as a Heat Transfer Fluid for Thermochemical Energy Storage in Concentrated Solar Power
,”
ASME
Paper No. ES2015-49409.
88.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
89.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p. 021008.
90.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Pitz-Paal
,
R.
,
Roeger
,
M.
, and
Mueller-Steinhagen
,
H.
,
2015
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Sol. Energy
,
115
, pp.
505
517
.
91.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Development of Solid Particle Thermal Energy Storage for Concentrating Solar Power Plants That Use Fluidized Bed Technology
,”
Energy Procedia
,
49
, pp.
898
907
.
92.
Martinek
,
J.
,
Wendelin
,
T.
, and
Ma
,
Z.
,
2018
, “
Predictive Performance Modeling Framework for a Novel Enclosed Particle Receiver Configuration and Application for Thermochemical Energy Storage
,”
Sol. Energy
,
166
, pp.
409
421
.
93.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2017
, “
Heat Transfer Models of Moving Packed-Bed Particle-to-SCO2 Heat Exchangers
,”
ASME
Paper No. ES2017-3377.
94.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J.-L.
,
Garcia
,
R.
,
Boissiere
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
, pp.
567
576
.
95.
Kuipers
,
J. A. M.
,
Prins
,
W.
, and
Van Swaaij
,
W. P. M.
,
1992
, “
Numerical Calculation of Wall-to-Bed Heat-Transfer Coefficients in Gas-Fluidized Beds
,”
AIChE J.
,
38
(
7
), pp.
1079
1091
.
96.
Lee
,
A.
, and
Miller
,
D. C.
,
2013
, “
A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber
,”
Ind. Eng. Chem. Res.
,
52
(
1
), pp.
469
484
.
97.
Trendewicz
,
A.
,
Braun
,
R.
,
Dutta
,
A.
, and
Ziegler
,
J.
,
2014
, “
One-Dimensional Steady-State Circulating Fluidized-Bed Reactor Model for Biomass Fast Pyrolysis
,”
Fuel
,
133
, pp.
253
262
.
98.
Humbird
,
D.
,
Trendewicz
,
A.
,
Braun
,
R.
, and
Dutta
,
A.
,
2017
, “
One-Dimensional Biomass Fast Pyrolysis Model With Reaction Kinetics Integrated in an Aspen Plus Biorefinery Process Model
,”
ACS Sustainable Chem. Eng.
,
5
(
3
), pp.
2463
2470
.
99.
Molerus
,
O.
,
1992
, “
Heat Transfer in Gas Fluidized Beds—Part 2: Dependence of Heat Transfer on Gas Velocity
,”
Powder Technol.
,
70
(
1
), pp.
15
20
.
100.
Brendelberger
,
S.
,
von Storch
,
H.
,
Bulfin
,
B.
, and
Sattler
,
C.
,
2017
, “
Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems
,”
Sol. Energy
,
141
, pp.
91
102
.
101.
Zhang
,
H.
,
Benoit
,
H.
,
Gauthier
,
D.
,
Degreve
,
J.
,
Baeyens
,
J.
,
Lopez
,
I. P.
,
Hemati
,
M.
, and
Flamant
,
G.
,
2016
, “
Particle Circulation Loops in Solar Energy Capture and Storage: Gas-Solid Flow and Heat Transfer Considerations
,”
Appl. Energy
,
161
, pp.
206
224
.
102.
Bellan
,
S.
,
Matsubara
,
K.
,
Cho
,
H. S.
,
Gokon
,
N.
, and
Kodama
,
T.
,
2018
, “
A CFD-DEM Study of Hydrodynamics With Heat Transfer in a Gas-Solid Fluidized Bed Reactor for Solar Thermal Applications
,”
Int. J. Heat Mass Transfer
,
116
, pp.
377
392
.
103.
Repole
,
K. K. D.
, and
Jeter
,
S. M.
,
2016
, “
Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power System
,”
ASME
Paper No. ES2016-59619.
104.
Shirley
,
A. I.
, and
Lemcoff
,
N. O.
,
1997
, “
High-Purity Nitrogen by Pressure-Swing Adsorption
,”
AIChE J.
,
43
(
2
), pp.
419
424
.
105.
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
On the Efficiency of Solar H-2 and Co Production Via the Thermochemical Cerium Oxide Redox Cycle: The Option of Inert-Swept Reduction
,”
Energy Fuels
,
29
(
2
), pp.
1045
1054
.
You do not currently have access to this content.