This paper presents FluxTracer, an advanced open source computer tool to assist in the analysis, design, and optimization of solar concentrators and receivers. FluxTracer is a postprocessor for Monte Carlo ray tracers used to simulate the optical behavior of solar concentrating systems. By postprocessing the rays generated by the ray tracer, FluxTracer can partition into volumetric pixels (voxels) a region of interest in three-dimensional (3D) space defined by the user and compute for each voxel the radiant power density of the concentrated solar radiation. Depending upon the set of rays provided by the ray tracer, it may be able to integrate the radiant power density in every voxel over time. The radiant energy density analysis described is just one of the analyses that FluxTracer can carry out on the set of rays generated by the ray tracer. This paper presents the main analyses that FluxTracer can provide. It also presents examples of how the information provided by FluxTracer can be used to assist in the analysis, design, and optimization of solar concentrators and receivers. FluxTracer is the first of a series of components of an open-source computational framework for the analysis, design, and optimization of solar concentrators and receiver, being developed by The Cyprus Institute (CyI) and the Australian National University (ANU).

References

References
1.
IEA, 2015, “
Technology Roadmap Solar Thermal Electricity
,”
IEA Technology Roadmaps
, OECD Publishing, Paris, France.
2.
Mathiesen
,
P.
, and
Kleissl
,
J.
,
2013
, “
Using High-Resolution NWP to Forecast Solar Irradiance for the Coastal Regions of Southern California
,”
AMS General Meeting
, Austin, TX, Jan. 9.
3.
Cruz
,
N. C.
,
Redondo
,
J. L.
,
Berenguel
,
M.
,
Álvarez
,
J. D.
,
Becerra-Teron
,
A.
, and
Ortigosa
,
P. M.
,
2017
, “
High Performance Computing for the Heliostat Field Layout Evaluation
,”
J. Supercomput.
,
73
(
1
), pp.
259
276
.
4.
He
,
C.
,
Feng
,
J.
, and
Zhao
,
Y.
,
2017
, “
Fast Flux Density Distribution Simulation of Central Receiver System on GPU
,”
Sol. Energy
,
144
(
1
), pp.
424
435
.
5.
Chiesi
,
M.
,
Vanzolini
,
L.
,
Scarselli
,
E. F.
, and
Guerrieri
,
R.
,
2013
, “
Accurate Optical Model for Design and Analysis of Solar Fields Based on Heterogeneous Multicore Systems
,”
Renew. Energy
,
55
, pp.
241
251
.
6.
Cho
,
E.
, and
Miller
,
F.
,
2016
, “
Comparing the Monte Carlo Method to the Discrete Ordinates Methods in Fluent for Calculating Radiation Heat Transfer in a Small Particle Receiver
,”
ASME
Paper No. ES2016-59465.
7.
Mecit
,
A. M.
, and
Miller
,
F.
,
2014
, “
A Comparison Between the Monte Carlo Ray Trace and the Fluent Discrete Ordinates Method for Treating Solar Input to a Particle Receiver
,”
ASME
Paper No. ES2014-6412.
8.
Belhomme
,
B.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
, and
Ulmer
,
S.
,
2009
, “
A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031002
.
9.
Farges
,
O.
,
Bézian
,
J.
,
Bru
,
H.
,
Hafi
,
M.
,
Fournier
,
R.
, and
Spiesser
,
C.
,
2015
, “
Life-Time Integration Using Monte Carlo Methods When Optimizing the Design of Concentrated Solar Power Plants
,”
J. Sol. Energy
,
113
, pp.
57
62
.
10.
Ghobeity
,
A.
, and
Mitsos
,
A.
,
2012
, “
Optimal Design and Operation of a Solar Energy Receiver and Storage
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031005
.
11.
Craig
,
K. J.
,
Moghimi
,
M. A.
,
Rungasamy
,
A. E.
,
Marsberg
,
J.
, and
Meyer
,
J. P.
,
2016
, “
Finite-Volume Ray Tracing Using Computational Fluid Dynamics in Linear Focus CSP Applications
,”
Appl. Energy
,
183
, pp.
241
256
.
12.
Moghimi
,
M. A.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2015
, “
A Novel Computational Approach to Combine the Optical and Thermal Modelling of Linear Fresnel Collectors Using the Finite Volume Method
,”
Sol. Energy
,
116
, pp.
407
427
.
13.
Scott
,
P.
,
De la Calle
,
A.
,
Hinkley
,
J.
, and
Pye
,
J.
,
2017
, “
SolarTherm: A Flexible Modelica-Based Simulator for CSP Systems
,”
AIP Conf. Proc.
,
1850
, p.
160026
.
14.
Blanco
,
M. J.
,
Amieva
,
J. M.
, and
Mancillas
,
A.
,
2005
, “
The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems
,”
ASME
Paper No. IMECE2005-81859.
15.
Blair
,
N.
,
Dobos
,
A. P.
,
Freeman
,
J.
,
Neises
,
T.
,
Wagner
,
M.
,
Ferguson
,
T.
,
Gilman
,
P.
, and
Janzou
,
S.
,
2014
, “
System Advisor Model, SAM 2014.1.14: General Description
,” National Renewable Energy Laboratory, Golden, CO, Technical, Report No.
NREL/TP-6A20-61019
.
16.
Pye
,
J.
,
Abbasi
,
E.
,
Arjomandi
,
M.
,
Coventry
,
J.
,
Ghanadi
,
F.
,
Hughes
,
G.
,
Kilm
,
J. S.
,
Ma
,
L.
,
Shirazi
,
A.
,
Torres
,
J. F.
,
Venn
,
Wang
,
Y.
, and
Zheng
,
M.
,
2018
, “
Towards Testing of a Second-Generation Bladed Receiver
,”
SolarPACES International Conference
, Casablanca, Morocco, Oct. 2–5.
17.
Blanco
,
M.
,
Mutuberria
,
A.
,
Monreal
,
A.
, and
Albert
,
R.
,
2011
, “
Results of the Empirical Validation of Tonatiuh at Mini-Pegase CNRS-PROMES Facility
,”
SolarPACES International Conference
, Granada, Spain, Sept. 20–23.
18.
Born
,
B.
, and
Wolf
,
E.
,
1980
,
Principles of Optics
,
6th ed.
,
Pergamon
, Oxford, UK, p.
ii
.
19.
Maurice
,
H.
, and
Nir
,
S.
,
2012
,
The Art of Multiprocessor Programming
,
Elsevier
, Amsterdam, The Netherlands, p.
14
.
20.
Amanatides
,
J.
, and
Woo
,
A.
,
1987
, “
A Fast Voxel Traversal Algorithm for Ray Tracing
,”
European Computer Graphics Conference and Exhibition
, Amsterdam, The Netherlands, Aug. 24–28, pp. 3–10.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.3443&rep=rep1&type=pdf
21.
Bonanos
,
A. M.
,
Georgiou
,
M. C.
,
Guillen
,
E.
, and
Papanicolas
,
C. N.
,
2017
, “
CSP+D: The Case Study at the PROTEAS Facility
,”
AIP Conf. Proc.
,
1850
, p. 170001.
22.
Stokos
,
K. G.
,
Stiliaris
,
E.
,
Bonanos
,
A. M.
,
Georgiou
,
M. C.
,
Guillen
,
E.
,
Montenon
,
A.
, and
Papanicolas
,
C. N.
,
2017
, “
The Control System at Proteas
,”
SolarPACES International Conference
,
AIP Conf. Proc.
,
2033
, p.
210019
.
23.
Bonanos
,
A. M.
, and
Papanicolas
,
C. N.
,
2016
, “
The PROTEAS Facility Heliostats Field: Layout and Performance Prediction
,”
Fifth International Conference on Renewable Energy Sources and Energy Efficiency
, Nicosia, Cyprus, May 5–6.
24.
Votyakov
,
E. V.
, and
Papanicolas
,
C. N.
,
2016
, “
Consistent Multiphysics Simulation of a Central Tower CSP Plant as Applied to ISTORE
,”
AIP Conf. Proc.
,
1850
, p.
160027
.
25.
Votyakov
,
E. V.
,
Georgiou
,
M. C.
,
Guillen
,
E.
,
Stilliaris
,
E.
, and
Papanicolas
,
C. N.
,
2017
, “
Experimental Methodology to Calculate Thermal Losses of a Molten Salt Cavity Receiver
,”
AIP Conf. Proc.
,
2033
, p.
040041
.
26.
Papanicolas
,
C. N.
,
Bonanos
,
A. M.
,
Georgiou
,
M. C.
,
Guillen
,
E.
,
Jarraud
,
N.
,
Marakkos
,
C.
,
Montenon
,
A.
,
Stiliaris
,
E.
,
Tsioli
,
E.
,
Tzamtzis
,
G.
, and
Votyakov
,
E. V.
,
2015
, “
CSP Cogeneration of Electricity and Desalinated Water at the Pentakomo Field Facility
,”
AIP Conf. Proc.
,
1734
, p.
100008
.
27.
Camacho
,
G. C.
,
1984
, “
Thermodynamic Criteria for Optimizing Receiver Shaping and Rim Angle
,”
SSPS DCS International Workshop: The First Term
, Cologne, Germany, pp.
2.4/1
2.4/52
.
You do not currently have access to this content.