A thermodynamic model of an isothermal ceria-based membrane reactor system is developed for fuel production via solar-driven simultaneous reduction and oxidation reactions. Inert sweep gas is applied on the reduction side of the membrane. The model is based on conservation of mass, species, and energy along with the Gibbs criterion. The maximum thermodynamic solar-to-fuel efficiencies are determined by simultaneous multivariable optimization of operational parameters. The effects of gas heat recovery and reactor flow configurations are investigated. The results show that maximum efficiencies of 1.3% (3.2%) and 0.73% (2.0%) are attainable for water splitting (carbon dioxide splitting) under counter- and parallel-flow configurations, respectively, at an operating temperature of 1900 K and 95% gas heat recovery effectiveness. In addition, insights on potential efficiency improvement for the membrane reactor system are further suggested. The efficiencies reported are found to be much lower than those reported in literature. We demonstrate that the thermodynamic models reported elsewhere can violate the Gibbs criterion and, as a result, lead to unrealistically high efficiencies. The present work offers enhanced understanding of the counter-flow membrane reactor and provides more accurate upper efficiency limits for membrane reactor systems.

References

References
1.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and Steinfeld, A.,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
2.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), p.
9234
.
3.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.
4.
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
On the Efficiency of Solar H2 and CO Production Via the Thermochemical Cerium Oxide Redox Cycle: The Option of Inert-Swept Reduction
,”
Energy Fuels
,
29
(
2
), pp.
1045
1054
.
5.
Jarrett
,
C.
,
Chueh
,
W.
,
Yuan
,
C.
,
Kawajiri
,
Y.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2016
, “
Critical Limitations on the Efficiency of Two-Step Thermochemical Cycles
,”
Sol. Energy
,
123
, pp.
57
73
.
6.
Ermanoski
,
I.
,
Miller
,
J. E.
, and
Allendorf
,
M. D.
,
2014
, “
Efficiency Maximization in Solar-Thermochemical Fuel Production: Challenging the Concept of Isothermal Water Splitting
,”
Phys. Chem. Chem. Phys.
,
16
(
18
), pp.
8418
8427
.
7.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
8.
Bader
,
R.
,
Venstrom
,
L. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production
,”
Energy Fuels
,
27
(
9
), pp.
5533
5544
.
9.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
.
10.
Muhich
,
C. L.
,
Evanko
,
B. W.
,
Weston
,
K. C.
,
Lichty
,
P.
,
Liang
,
X.
,
Martinek
,
J.
, Musgrave, C. B., and Weimer, A. W.,
2013
, “
Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,”
Science
,
341
(
6145
), pp.
540
542
.
11.
Kong
,
H.
,
Hao
,
Y.
, and
Jin
,
H.
,
2018
, “
Isothermal Versus Two-Temperature Solar Thermochemical Fuel Synthesis: A Comparative Study
,”
Appl. Energy
,
228
, pp.
301
308
.
12.
Al-Shankiti
,
I.
,
Ehrhart
,
B. D.
, and
Weimer
,
A. W.
,
2017
, “
Isothermal Redox for H2O and CO2 Splitting—A Review and Perspective
,”
Sol. Energy
,
156
, pp.
21
29
.
13.
Roeb
,
M.
,
Neises
,
M.
,
Säck
,
J.-P.
,
Rietbrock
,
P.
,
Monnerie
,
N.
,
Dersch
,
J.
, Schmitz, M., and Sattler, C.,
2009
, “
Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4537
4545
.
14.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
15.
Lapp
,
J.
, and
Lipiński
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting Via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.
16.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.
17.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.
18.
Fletcher
,
E. A.
, and
Moen
,
R. L.
,
1977
, “
Hydrogen and Oxygen From Water
,”
Science
,
197
(
4308
), pp.
1050
1056
.
19.
Browall
,
K.
, and
Doremus
,
R.
,
1977
, “
Synthesis and Evaluation of Doped Y2O3‐Stabilized ZrO2 for the Production of Hydrogen
,”
J. Am. Ceram. Soc.
,
60
(
5–6
), pp.
262
267
.
20.
Naito
,
H.
, and
Arashi
,
H.
,
1995
, “
Hydrogen Production From Direct Water Splitting at High Temperatures Using a ZrO2-TiO2-Y2O3 Membrane
,”
Solid State Ionics
,
79
, pp.
366
370
.
21.
Wang
,
H.
,
Hao
,
Y.
, and
Kong
,
H.
,
2015
, “
Thermodynamic Study on Solar Thermochemical Fuel Production With Oxygen Permeation Membrane Reactors
,”
Int. J. Energy Res.
,
39
(
13
), pp.
1790
1799
.
22.
Tou
,
M.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2017
, “
Solar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 Across a Ceria Redox Membrane Reactor
,”
Joule
,
1
(
1
), pp.
146
154
.
23.
Xu
,
S. J.
, and
Thomson
,
W. J.
,
1999
, “
Oxygen Permeation Rates Through Ion-Conducting Perovskite Membranes
,”
Chem. Eng. Sci.
,
54
(
17
), pp.
3839
3850
.
24.
Tan
,
X.
, and
Li
,
K.
,
2002
, “
Modeling of Air Separation in a LSCF Hollow‐Fiber Membrane Module
,”
AIChE J.
,
48
(
7
), pp.
1469
1477
.
25.
Wu
,
X. Y.
, and
Ghoniem
,
A. F.
,
2018
, “
Hydrogen-Assisted Carbon Dioxide Thermochemical Reduction on La0.9Ca0.1 FeO3-δ Membranes: A Kinetics Study
,”
ChemSusChem
,
11
(
2
), pp.
483
493
.
26.
Wu
,
X.-Y.
, and
Ghoniem
,
A. F.
,
2018
, “
CO2 Reduction and Methane Partial Oxidation on Surface Catalyzed La0.9 Ca0.1FeO3-δ Oxygen Transport Membranes
,”
Proc. Combust. Inst.
(epub).
27.
Zhu
,
L.
,
Lu
,
Y.
, and
Shen
,
S.
,
2016
, “
Solar Fuel Production at High Temperatures Using Ceria as a Dense Membrane
,”
Energy
,
104
, pp.
53
63
.
28.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
, and
Lipiński
,
W.
,
2018
, “
Thermodynamic Analyses of Fuel Production Via Solar-Driven Non-Stoichiometric Metal Oxide Redox Cycling—Part 1: Revisiting Flow and Equilibrium Assumptions
,”
Energy Fuels
,
32
(
10
), pp.
10838
10847
.
29.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2018
, “
Thermodynamic Analyses of Fuel Production Via Solar-Driven Non-Stoichiometric Metal Oxide Redox Cycling—Part 2: Impact of Solid–Gas Flow Configurations and Active Material Composition on System-Level Efficiency
,”
Energy Fuels
,
32
(
10
), pp.
10848
10863
.
You do not currently have access to this content.