The reconstruction of the angular and spatial intensity distribution from radiative flux maps measured in high flux solar simulators (HFSS) or optical concentrators is an ill-posed inverse problem requiring special solution strategies. We aimed at providing a solution strategy for the determination of intensity distributions of arbitrarily complicated concentrating facilities. The approach consists of the inverse reconstruction of the intensities from multiple radiative flux maps recorded at various positions around the focal plane. The approach was validated by three test cases including uniform spatial, Gaussian spatial, and uniform angular distributions for which we successfully predicted the intensity for a square-shaped target with edge length of 0.5 m and for a displacement range spanning ±1.5 m at a resolution of 3.2 × 106 elements, yielding relative errors between 19.8–26.4% and 15.7–25.6% when using Tikhonov regularization and the conjugate gradient least square (CGLS) method, respectively. The latter method showed superior performance and was used at a resolution of 2.35 × 107 elements to analyze EPFL's HFSS comprising 18 lamps. The inverse solution for a single lamp retrieved from experimentally measured and simulated radiative flux maps showed peak intensities of 13.7 MW/m2/sr and 16.0 MW/m2/sr, respectively, with a relative error of 81.1%. The inverse reconstruction of the entire simulator by superimposing the single lamp intensities retrieved from simulated flux maps resulted in a maximum intensity of 18.8 MW/m2/sr with a relative error of 80%. The inverse method proved to provide reasonable intensity predictions with limited resolution of details imposed by the high gradients in the radiative flux maps.

References

References
1.
Levêque
,
G.
,
Bader
,
R.
,
Lipiński
,
W.
, and
Haussener
,
S.
,
2017
, “
High-Flux Optical Systems for Solar Thermochemistry
,”
Sol. Energy
,
156
, pp.
133
148
.
2.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Ha¨berling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 KW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
3.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2011
, “
Design of a New 45 KWel High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011013
.
4.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 KW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p. 125107.https://aip.scitation.org/doi/10.1063/1.4936976
5.
Bader
,
R.
,
Haussener
,
S.
, and
Lipinski
,
W.
,
2014
, “
Optical Design of Multisource High-Flux Solar Simulators
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021012
.
6.
Levêque
,
G.
,
Bader
,
R.
,
Lipiński
,
W.
, and
Haussener
,
S.
,
2016
, “
Experimental and Numerical Characterization of a New 45 kWel Multisource High-Flux Solar Simulator
,”
Opt. Express
,
24
(
22
), pp.
1360
1373
.
7.
Rowe
,
S. C.
,
Wallace
,
M. A.
,
Lewandowski
,
A.
,
Fisher
,
R. P.
,
Ray Cravey
,
W.
,
Clough
,
D. E.
,
Hischier
,
I.
, and
Weimer
,
A. W.
,
2017
, “
Experimental Evidence of an Observer Effect in High-Flux Solar Simulators
,”
Sol. Energy
,
158
, pp.
889
897
.
8.
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2011
, “
A New 500 M2 Paraboloidal Dish Solar Concentrator
,”
Sol. Energy
,
85
(
4
), pp.
620
626
.
9.
Dähler
,
F.
,
Wild
,
M.
,
Schäppi
,
R.
,
Haueter
,
P.
,
Cooper
,
T.
,
Good
,
P.
,
Larrea
,
C.
,
Schmitz
,
M.
,
Furler
,
P.
, and
Steinfeld
,
A.
,
2018
, “
Optical Design and Experimental Characterization of a Solar Concentrating Dish System for Fuel Production Via Thermochemical Redox Cycles
,”
Sol. Energy
,
170
, pp.
568
575
.
10.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy
,
23
(
10
), pp.
803
814
.
11.
Z'Graggen
,
A.
,
Haueter
,
P.
,
Trommer
,
D.
,
Romero
,
M.
,
de Jesus
,
J. C.
, and
Steinfeld
,
A.
,
2006
, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
797
811
.
12.
Li
,
Z.
,
Tang
,
D.
,
Du
,
J.
, and
Li
,
T.
,
2011
, “
Study on the Radiation Flux and Temperature Distributions of the Concentrator–Receiver System in a Solar Dish/Stirling Power Facility
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1780
1789
.
13.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lu¨pfert
,
E.
, and
Martı́nez
,
D.
,
2002
, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
182
188
.
14.
Kaluza
,
J.
, and
Neumann
,
A.
,
2018
, “
Comparative Measurements of Different Solar Flux Gauge Types
,”
ASME J. Sol. Energy Eng.
,
123
(
3
), pp.
251
255
.
15.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray-Tracing Program for Concentrating Solar Energy Research
,”
ASME
Paper No. ES2010-90206.
16.
Andraka
,
C. E.
,
Yellowhair
,
J.
, and
Iverson
,
B. D.
,
2010
, “
A Parametric Study of the Impact of Various Error Contributions on the Flux Distribution of a Solar Dish Concentrator
,”
ASME
Paper No. ES2010-90242.
17.
Arridge
,
S. R.
, and
Schotland
,
J. C.
, 2009, “
Optical Tomography: Forward and Inverse Problems
,”
Inverse Problems
,
25
(12), p. 123010.
18.
Colaço
,
M. J.
, and
Dulikravich
,
G. S.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
24
.
19.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
2919
.
20.
Yang
,
C.
,
1999
, “
Estimation of the Temperature-Dependent Thermal Conductivity in Inverse Heat Conduction Problems
,”
Appl. Math. Model.
,
23
(
6
), pp.
469
478
.
21.
Li
,
H. Y.
, and
Yang
,
C. Y.
,
1997
, “
A Genetic Algorithm for Inverse Radiation Problems
,”
Int. J. Heat Mass Transfer
,
40
(
7
), pp.
1545
1549
.
22.
Ho
,
H.
,
1988
, “
Inverse Radiation Problems in Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
40
(
5
), pp.
553
560
.
23.
Subramaniam
,
S.
, and
Mengüç
,
M.
,
1991
, “
Solution of the Inverse Radiation Problem for Inhomogeneous and Anisotropically Scattering Media Using a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
253
266
.
24.
Liu
,
L. H.
, and
Tan
,
H. P.
,
2001
, “
Inverse Radiation Problem in Three-Dimensional Complicated Geometric Systems With Opaque Boundaries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
68
(
5
), pp.
559
573
.
25.
Park
,
H. M.
, and
Yoon
,
T. Y.
,
2000
, “
Solution of the Inverse Radiation Problem Using a Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1767
1776
.
26.
Erickson
,
B. M.
, and
Petrasch
,
J.
,
2012
, “
Inverse Identification of Intensity Distributions From Multiple Flux Maps in Concentrating Solar Applications
,”
J. Phys. Conf. Ser.
,
369
, p.
012014
.
27.
Aster
,
R. C.
,
Borchers
,
B.
, and
Thurber
,
C. H.
,
2013
, “
Chapter Four–Tikhonov Regularization
,”
Parameter Estimation and Inverse Problems
,
R. C.
Aster
,
B.
Borchers
, and
C. H.
Thurber
, eds.,
2nd ed.
,
Academic Press
,
Boston, MA
, pp.
93
127
.
28.
Michael
,
F. M.
,
2013
, “
Fundamentals of Thermal Radiation
,”
Radiative Heat Transfer
,
M. F.
Modest
, ed.,
Academic Press
, Amsterdam, The Netherlands, pp.
1
30
.
29.
Colaço
,
M. J.
,
Orlande
,
H. R. B.
,
Dulikravich
,
G. S.
, and
Rodrigues
,
F. A.
,
2003
, “
A Comparison of Two Solution Techniques for the Inverse Problem of Simultaneously Estimating the Spatial Variations of Diffusion Coefficients and Source Terms
,”
Heat Transfer
, Vol.
1
,
American Society of Mechanical Engineers
,
New York
, pp.
221
230
.
30.
Golsorkhi
,
N. A.
, and
Tehrani
,
H. A.
,
2014
, “
Levenberg-Marquardt Method for Solving the Inverse Heat Transfer Problems
,”
J. Math. Comput. Sci.
,
13
(
4
), pp.
300
310
.
31.
Hadamard
,
J.
,
1923
,
Lectures on Cauchy's Problem in Linear Partial Differential Equations
,
Dover Publications
, Mineola, NY.
32.
Golub
,
G. H.
,
Hansen
,
P. C.
, and
O'Leary
,
D. P.
,
1999
, “
Tikhonov Regularization and Total Least Squares
,”
Soc. Ind. Appl. Math.
,
21
(
1
), pp.
185
194
.
33.
Hansen
,
P. C.
,
1998
,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
34.
Hansen
,
C.
,
1992
, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.
35.
Aster
,
R. C.
,
Borchers
,
B.
, and
Thurber
,
C. H.
,
2013
, “
Iterative Methods
,”
Parameter Estimation and Inverse Problems
,
R. C.
Aster
,
B.
Borchers
, and
C. H.
Thurber
, eds.,
2nd ed.
,
Academic Press
,
Boston, MA
, pp.
141
168
.
36.
Jin
,
B.
, and
Zheng
,
Y.
,
2006
, “
A Meshless Method for Some Inverse Problems Associated With the Helmholtz Equation
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
19–22
), pp.
2270
2288
.
37.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley Publishing
, Boston, MA.
38.
Storn
,
R.
, and
Price
,
K.
,
1996
, “
Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution
,”
IEEE
International Conference on Evolutionary Computation
, Nagoya, Japan, May 20–22, pp.
842
844
.
39.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks
, Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
40.
Corana
,
A.
, and
C. Martini and S. Ridella
,
M. A.
,
1989
, “
Minimizing Multimodal Functions of Continuous Variables With the ‘Simulated Annealing’ Algorithm
,”
ACM Trans. Math. Software
,
15
(
3
), p.
287
.
41.
Fletcher
,
R.
,
2000
,
Practical Methods of Optimization
,
Wiley
, Hoboken, NJ.
42.
Guillot
,
E.
,
Alxneit
,
I.
,
Ballestrin
,
J.
,
Sans
,
J. L.
, and
Willsh
,
C.
,
2014
, “
Comparison of 3 Heat Flux Gauges and a Water Calorimeter for Concentrated Solar Irradiance Measurement
,”
Energy Procedia
,
49
, pp.
2090
2099
.
43.
Krueger
,
K. R.
,
2012
,
Design and Characterization of a Concentrating Solar Simulator
,
University of Minnesota
, Minnesota, MN.
You do not currently have access to this content.