The most advanced solar thermochemical cycles in terms of demonstrated reactor efficiencies are based on temperature swing operated receiver-reactors with open porous ceria foams as a redox material. The demonstrated efficiencies are encouraging but especially for cycles based on ceria as the redox material, studies have pointed out the importance of high solid heat recovery rates to reach competitive process efficiencies. Different concepts for solid heat recovery have been proposed mainly for other types of reactors, and demonstration campaigns have shown first advances. Still, solid heat recovery remains an unsolved challenge. In this study, chances and limitations for solid heat recovery using a thermal storage unit with gas as heat transfer fluid are assessed. A numerical model for the reactor is presented and used to analyze the performance of a storage unit coupled to the reactor. The results show that such a concept could decrease the solar energy demand by up to 40% and should be further investigated.

References

References
1.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.
2.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.
3.
Muhich
,
C. L.
,
Blaser
,
S.
,
Hoes
,
M.C.
, and
Steinfeld
,
A.
,
2018
, “
Comparing the Solar-to-Fuel Energy Conversion Efficiency of Ceria and Perovskite Based Thermochemical Redox Cycles for Splitting H2O and CO2
,”
Int. J. Hydrogen Energy
,
43
(
41
), pp.
18814
18831
.
4.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), pp.
41001
41008
.
5.
Diver
,
R. B.
,
Miller
,
J. E.
,
Siegel
,
N. P.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
ASME
Paper No. ES2010-90093.
6.
Falter
,
C. P.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2015
, “
Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
122
, pp.
1296
1308
.
7.
Lapp
,
J.
,
Davidson
,
J.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.
8.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.
9.
Brendelberger
,
S.
,
Felinks
,
J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2014
, “
Solid Phase Heat Recovery and Multi Chamber Reduction for Redox Cycles
,”
ASME
Paper No. ES2014-6421.
10.
Felinks
,
J.
,
Brendelberger
,
S.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2014
, “
Heat Recovery Concept for Thermochemical Processes Using a Solid Heat Transfer Medium
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1006
1013
.
11.
Brendelberger
,
S.
, and
Sattler
,
C.
,
2015
, “
Concept Analysis of an Indirect Particle-Based Redox Process for Solar-Driven H2O/CO2 Splitting
,”
Sol. Energy
,
113
, pp.
158
170
.
12.
Felinks
,
J.
,
Richter
,
S.
,
Lachmann
,
B.
,
Brendelberger
,
S.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
,
2016
, “
Particle–Particle Heat Transfer Coefficient in a Binary Packed Bed of Alumina and Zirconia-Ceria Particles
,”
Appl. Therm. Eng.
,
101
, pp.
101
111
.
13.
Felinks
,
J.
,
2017
,
Heat Recovery From Particles Using Spherical Heat Transfer Media in Solar Thermochemical Cycles
,
RWTH Aachen
,
Aachen, Germany
.
14.
Yuan
,
C.
,
Jarrett
,
C.
,
Chueh
,
W.
,
Kawajiri
,
Y.
, and
Henry
,
A.
,
2015
, “
A New Solar Fuels Reactor Concept Based on a Liquid Metal Heat Transfer Fluid: Reactor Design and Efficiency Estimation
,”
Sol. Energy
,
122
, pp.
547
561
.
15.
Hathaway
,
B. J.
,
Bala Chandran
,
R.
,
Gladen
,
A. C.
,
Chase
,
T. R.
, and
Davidson
,
J. H.
,
2016
, “
Demonstration of a Solar Reactor for Carbon Dioxide Splitting Via the Isothermal Ceria Redox Cycle and Practical Implications
,”
Energy Fuels
,
30
(
8
), pp.
6654
6661
.
16.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
17.
Säck
,
J. P.
,
Breuer
,
S.
,
Cotelli
,
P.
,
Houaijia
,
A.
,
Lange
,
M.
,
Wullenkord
,
M.
,
Spenke
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
High Temperature Hydrogen Production: Design of a 750 KW Demonstration Plant for a Two Step Thermochemical Cycle
,”
Sol. Energy
,
135
, pp.
232
241
.
18.
Kyrimis
,
S.
,
Le Clercq
,
P.
, and
Brendelberger
,
S.
,
2018
, “
3D Modelling of a Solar Thermochemical Reactor for MW Scaling-Up Studies
,”
SolarPACES
, Casablanca, Morocco, Oct. 2–5, Paper No. 25746.
19.
Haussener
,
S.
,
Jerjen
,
I.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2012
, “
Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media
,”
ASME J. Heat Transfer
,
134
(
1
), p. 012601.
20.
Ackermann
,
S.
,
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2017
, “
Reticulated Porous Ceria Undergoing Thermochemical Reduction With High-Flux Irradiation
,”
Int. J. Heat Mass Transfer
,
107
, pp.
439
449
.
21.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2005
, “
Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
666
676
.
22.
Warren
,
K. J.
,
Reim
,
J.
,
Randhir
,
K.
,
Greek
,
B.
,
Carrillo
,
R.
,
Hahn
,
D. W.
, and
Scheffe
,
J. R.
,
2017
, “
Theoretical and Experimental Investigation of Solar Methane Reforming Through the Nonstoichiometric Ceria Redox Cycle
,”
Energy Technol.
,
5
(
11
), pp.
2138
2149
.
23.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Chandran
,
R. B.
,
Boman
,
D. B.
,
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
Applicability of an Equilibrium Model to Predict the Conversion of CO2 to CO Via the Reduction and Oxidation of a Fixed Bed of Cerium Dioxide
,”
Energy Fuels
,
29
(
12
), pp.
8168
8177
.
24.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
25.
Keene
,
D. J.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2013
, “
A Model of Transient Heat and Mass Transfer in a Heterogeneous Medium of Ceria Undergoing Nonstoichiometric Reduction
,”
ASME J. Heat Transfer
,
135
(
5
), p. 052701.
26.
Takacs
,
M.
,
Ackermann
,
S.
,
Bonk
,
A.
,
Neises‐von
,
M.
, Puttkamer, Haueter, Ph.,
Scheffe
,
J. R.
,
Vogt
,
U. F.
, and
Steinfeld
,
A.
,
2017
, “
Splitting CO2 With a Ceria-Based Redox Cycle in a Solar-Driven Thermogravimetric Analyzer
,”
AIChE J.
,
63
(
4
), pp.
1263
1271
.https://doi.org/10.1002/aic.15501
27.
Part L1.2
Kast
,
W.
, and
Nirschl
,
H.
,
2010
,
VDI Heat Atlas
,
2nd ed.
,
Springer
,
Berlin
.
You do not currently have access to this content.