For many decades, integration of concentrated solar power (CSP) and desalination relied solely on the use of conventional steam Rankine cycles with thermally based desalination technologies. However, CSP research focus is shifting toward the use of supercritical CO2 Brayton cycles due to the significant improvement in thermal efficiencies. Here, we present a techno-economic study that compares the generated power and freshwater produced from a CSP system operated with a Rankine and Brayton cycle. Such a study facilitates co-analysis of the costs of producing both electricity and water among the other trade-off assessments. To minimize the levelized cost of water (LCOW), a desalination facility utilizing multi-effect distillation with thermal vapor compression (MED/TVC) instead of multistage flash distillation (MSF) is most suitable. The techno-economic analysis reveals that in areas where water production is crucial to be optimized, although levelized cost of electricity (LCOE) values are lowest for wet-cooled recompression closed Brayton cycle (RCBR) with MSF (12.1 cents/kWhe) and MED/TVC (12.4 cents/kWhe), there is only a 0.35 cents/kWhe increase for dry-cooled RCBR with MED/TVC to a cost of 12.8 cents/kWhe. This suggests that the best candidate for optimizing water production while minimizing both LCOW and LCOE is dry-cooled RCBR with MED/TVC desalination.

References

References
1.
Urban
,
J. J.
,
2017
, “
Emerging Scientific and Engineering Opportunities Within the Water-Energy Nexus
,”
Joule
,
1
(
4
), pp.
665
688
.
2.
General Electric Power
,
2009
, “
Breaking the Plant Efficiency Record
,” General Electric Power, Schenectady, NY, accessed Dec. 16, 2017, https://www.gepower.com/about/insights/2016/04/power-plant-efficiency-record
3.
Shahzad
,
M. W.
,
Burhan
,
M.
,
Ang
,
L.
, and
Ng
,
K. C.
,
2017
, “
Energy-Water-Environment Nexus Underpinning Future Desalination Sustainability
,”
Desalination
,
413
, pp.
52
64
.
4.
U.S. EPA
,
2017
, “
Greenhouse Gas Equivalencies Calculator
,” U.S. Environmental Protection Agency, Washington, DC, accessed Aug. 18, 2018, https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
5.
U.S. DoE
,
2017
, “
Solar Desalination
,” U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Washington, DC, accessed Aug. 18, 2018, https://eere-exchange.energy.gov/FileContent.aspx?FileID=1b90ccee-f73e-4a19-894b-2e18e16ec09f
6.
Fleming
,
D.
,
Holschuh
,
T.
,
Conboy
,
T.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Path Forward for Commercialization
,”
ASME
Paper No. GT2012-68484.
7.
Rochau
,
G. E.
,
Pasch
,
J. J.
,
Carlson
,
M. D.
,
Fleming
,
D. D.
,
Kruizenga
,
A. M.
,
Sharpe
,
R. A.
, and
Wilson
,
M. C.
,
2014
, “
Supercritical CO2 Brayton Cycles
,” Sandia National Laboratories (SNL-NM),
Albuquerque, NM
, Report No. SAND2014-16828D.
8.
Siegel
,
N.
,
Gross
,
M.
,
Ho
,
C.
,
Phan
,
T.
, and
Yuan
,
J.
,
2014
, “
Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications
,”
Energy Procedia
,
49
, pp.
1015
1023
.
9.
Stein
,
W. H.
, and
Buck
,
R.
,
2017
, “
Advanced Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
152
, pp.
91
105
.
10.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
11.
Lovegrove
,
K.
, and
Pye
,
J.
,
2012
, “
Fundamental Principles of Concentrating Solar Power (CSP) Systems
,”
Concentrating Solar Power Technology: Principles, Developments and Applications
(
Woodhead Publishing Series in Energy
), Woodhead Publishing, Sawston, UK, pp.
16
67
.
12.
Palenzuela
,
P.
,
Alarcón-Padilla
,
D.-C.
, and
Zaragoza
,
G.
,
2015
,
Concentrating Solar Power and Desalination Plants
,
Springer International Publishing
,
Cham, Switzerland
.
13.
Trieb
,
F.
,
Nitsch
,
J.
,
Kronshage
,
S.
,
Schillings
,
C.
,
Brischke
,
L.-A.
,
Knies
,
G.
, and
Czisch
,
G.
,
2003
, “
Combined Solar Power and Desalination Plants for the Mediterranean Region—Sustainable Energy Supply Using Large-Scale Solar Thermal Power Plants
,”
Desalination
,
153
(
1–3
), pp.
39
46
.
14.
Dawoud
,
M. A.
,
2012
, “
Water Import and Transfer Versus Desalination in Arid Regions: GCC Countries Case Study
,”
Desalin. Water Treat.
,
28
(
1–3
), pp.
153
163
.
15.
Napoli
,
C.
, and
Rioux
,
B.
,
2016
, “
Evaluating the Economic Viability of Solar-Powered Desalination: Saudi Arabia as a Case Study
,”
Int. J. Water Resour. Dev.
,
32
(
3
), pp.
412
427
.
16.
Elimelech
,
M.
, and
Phillip
,
W. A.
,
2011
, “
The Future of Seawater Desalination: Energy, Technology, and the Environment
,”
Science
,
333
(
6043
), pp.
712
717
.
17.
U.S. EIA
,
2016
, “
Electric Power Annual 2016
,” U.S. Energy Information Administration, Washington, DC, accessed Nov. 30, 2018, https://www.eia.gov/electricity/annual/
18.
Choose Energy
, 2018, “
Electricity Rates in Your State
,” Choose Energy, Fort Mill, SC, accessed Aug. 18, 2018, https://www.chooseenergy.com/electricity-rates-by-state/
19.
Hamed
,
O. A.
,
Al-Sofi
,
M. A. K.
,
Imam
,
M.
,
Mustafa
,
G. M.
,
Ba Mardouf
,
K.
, and
Al-Washmi
,
H.
,
2000
, “
Thermal Performance of Multi-Stage Flash Distillation Plants in Saudi Arabia
,”
Desalination
,
128
(
3
), pp.
281
292
.
20.
Hamed
,
O. A.
,
2005
, “
Overview of Hybrid Desalination Systems—Current Status and Future Prospects
,”
Desalination
,
186
(
1–3
), pp.
207
214
.
21.
Al-Sofi
,
M. A. K.
,
Hassan
,
A. M.
,
Mustafa
,
G. M.
,
Dalvi
,
A. G. I.
, and
Kither
,
M. N. M.
,
1998
, “
Nanofiltration as a Means of Achieving Higher TBT of ≥120 °C in MSF
,”
Desalination
,
118
(
1–3
), pp.
123
129
.
22.
Roy
,
Y.
,
Thiel
,
G. P.
,
Antar
,
M. A.
, and
Lienhard
,
J. H.
,
2017
, “
The Effect of Increased Top Brine Temperature on the Performance and Design of OT-MSF Using a Case Study
,”
Desalination
,
412
, pp.
32
38
.
23.
Short
,
W.
,
Packey
,
D. J.
, and
Holt
,
T.
,
1995
, “
A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-462-5173
.https://www.nrel.gov/docs/legosti/old/5173.pdf.
24.
Tidball
,
R.
,
Bluestein
,
J.
,
Rodriguez
,
N.
, and
Knoke
,
S.
,
2010
, “
Cost and Performance Assumptions for Modeling Electricity Generation Technologies
,” ICF International, Fairfax, VA, Report No.
NREL/SR-6A20-48595
.https://www.nrel.gov/docs/fy11osti/48595.pdf
25.
Mehos
,
M.
,
Jorgenson
,
J.
,
Denholm
,
P.
, and
Turchi
,
C.
,
2015
, “
An Assessment of the Net Value of CSP Systems Integrated With Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
2060
2071
.
26.
Staley
,
B. C.
,
Goodward
,
J.
,
Rigdon
,
C.
, and
MacBride
,
A.
,
2009
, “
Juice From Concentrate: Reducing Emissions With Concentrating Solar Thermal Power
,”
World Resources Institute
, Washington, DC, accessed Feb. 22, 2018, http://pdf.wri.org/juice_from_concentrate.pdf
27.
Almar Water Solutions
,
2016
, “
Desalination Technologies and Economics: CAPEX, OPEX & Technological Game Changers to Come
,” Almar Water Solutions, Madrid, Spain, accessed Dec. 16, 2017, http://www.cmimarseille.org/sites/default/files/newsite/library/files/en/1.6.%20C.%20Cosin_%20Desalination%20technologies%20and%20economics_%20capex%2C%20opex%20and%20technological%20game%20changers%20to%20come%20-ilovepdf-compressed.pdf
28.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
758
770
.
29.
Patel
,
S.
,
2016
, “
Supercritical CO2 Brayton Power Cycle Pilot Plant Bolstered With $80M in Federal Funding
,” POWER Magazine, Houston, TX, accessed Feb. 23, 2018, http://www.powermag.com/supercritical-co2-brayton-power-cycle-pilot-plant-bolstered-with-80m-in-federal-funding/
30.
Blank
,
J. E.
,
Tusel
,
G. F.
, and
Nisanc
,
S.
,
2007
, “
The Real Cost of Desalted Water and How to Reduce It Further
,”
Desalination
,
205
(
1–3
), pp.
298
311
.
31.
Semiat
,
R.
,
2008
, “
Energy Issues in Desalination Processes
,”
Environ. Sci. Technol.
,
42
(
22
), pp.
8193
8201
.
32.
U.S. DoE Solar Energy Technologies Office
, 2017, “
SunShot 2030: New Solar Opportunities for a New Decade
,” U.S. Department of Energy Solar Energy Technologies Office, Washington, DC, accessed Mar. 1, 2018, https://www.energy.gov/eere/solar/sunshot-2030
33.
International Renewable Energy Agency
,
2017
, “
Global Levelised Cost of Electricity From Utility-Scale Renewable Power Generation Technologies 2010–2017
,” International Renewable Energy Agency, Abu Dhabi, United Arab Emirates, accessed Nov. 5, 2018, https://public.tableau.com/shared/TF2H42WMF?:toolbar=no&:display_count=no&:showVizHome=no
34.
Mehos
,
M.
,
Turchi
,
C.
,
Jorgenson
,
J.
,
Denholm
,
P.
,
Ho
,
C.
, and
Armijo
,
K.
,
2016
, “
On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability
,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/TP-5500-65688.
You do not currently have access to this content.