This paper introduces a chemical-looping configuration integrated with a concentrating solar thermal (CST) system. The CST system uses an array of mirrors to focus sunlight, and the concentrated solar flux is applied to a solar receiver to collect and convert solar energy into thermal energy. The thermal energy then drives a thermal power cycle for electricity generation or provides an energy source to chemical processes for material or fuel production. Considerable interest in CST energy systems has been driven by power generation, with its capability to store thermal energy for continuous electricity supply or peak shaving. However, CST systems have other potential to convert solar energy into fuel or to support thermochemical processes. Thus, we introduce the concept of a chemical-looping configuration integrated with the CST system that has potential applications for thermochemical energy storage or solar thermochemical hydrogen production. The chemical-looping configuration integrated with a CST system consists of the following: a solar-receiver reactor for solar-energy collection and conversion, thermochemical energy storage, a reverse reactor for energy release, and system circulation. We describe a high-temperature reactor receiver that is a key component in the chemical-looping system. We also show the solar-receiver design and its performance analyzed by solar-tracing and thermal-modeling methods for integration within a CST system.

References

References
1.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
, pp. 611–619.
2.
Lorentzou
,
S.
,
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Zygogianni
,
A.
, and
Konstandopoulos
,
A. G.
,
2013
, “
Thermochemical CO2 and CO2/H2O Splitting Over NiFe2O4 for Solar Fuels Synthesis
,”
Energy Procedia
,
49
, pp. 1999–2008.
3.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
,
2009
, “
New Solar Water-Splitting Reactor With Ferrite Particles in an Internally Circulating Fluidized Bed
,”
ASME J. Sol. Energy Eng.
,
131
, p.
011007
.
4.
Kolb
,
G. J.
,
Diver
,
R. B.
, and
Siegel
,
N.
,
2007
, “
Central-Station Solar Hydrogen Power Plant
,”
ASME J. Sol. Energy Eng.
,
129
(2), pp.
179
183
.
5.
Hatamachi
,
T.
,
Kodama
,
T.
, and
Isobe
,
Y.
,
2005
, “
Carbonate Composite Catalyst With High-Temperature Thermal Storage for Use in Solar Tubular Reformers
,”
ASME J. Sol. Energy Eng.
,
127
(3), pp.
396
400
.
6.
Ishihara
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
, and
Tamaura
,
Y.
,
2008
, “
Two-Step Water Splitting Process With Solid Solution of YSZ and Ni-Ferrite for Solar Hydrogen Production
,”
ASME J. Sol. Energy Eng.
,
130
(11), p.
044501
.
7.
Perkins
,
C. M.
,
Woodruff
,
B.
,
Andrews
,
L.
,
Lichty
,
P.
,
Lancaster
,
B.
,
Bingham
,
C.
, and
Weimer
,
A. W.
,
2008
, “
Synthetic Gas Production by Rapid Solar Thermal Gasification of Corn Stover
,”
14th Biennial CSP SolarPACES Symposium
, Las Vegas, NV, Mar. 4–7.
8.
Rao
,
C. N. R.
, and
Dey
,
S.
,
2016
, “
Generation of H2 and CO by Solar Thermochemical Splitting of H2O and CO2 by Employing Metal Oxides
,”
J. Solid State Chem.
,
242
, pp.
107
115
.
9.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
10.
Yali Yao
,
X. L.
,
Liu, D.
,
Hildebrandt
,
D.
, and
Glasser
,
D.
,
2011
, “
Fischer–Tropsch Synthesis Using H2/CO/CO2 Syngas Mixtures Over an Iron Catalyst
,”
Ind. Eng. Chem. Res.
,
50
, pp.
11002
11012
.
11.
T-Raissi
,
A.
,
Muradov
,
N.
,
Huang
,
C.
, and
Adebiyi
,
O.
,
2007
, “
Hydrogen From Solar Via Light-Assisted High Temperature Water Splitting Cycles
,”
ASME J. Sol. Energy Eng.
,
129
(2), pp.
184
189
.
12.
Davidson
,
F. T.
,
Nagasawa
,
K.
, and
Webber
,
M. E.
,
2017
, “
Electro Fuels—One Way to Store Excess Renewable Electricity is to Convert It to Hydrogen, Methane, or Ammonia
,”
ASME Mech. Eng.
,
139
(
9
), pp. 30–35.
13.
Ma
,
Z.
,
2017
, “
Chemical Looping Fluidized-Bed Concentrating Solar Power System and Method
,” Alliance for Sustainable Energy, Washington, D. C., U.S. Patent No. 9,702,348. B2.
14.
Furler
,
P.
,
Marxer
,
D.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2013
, “
Solar Thermochemical H2O and CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,” ETH Presentation in Porous Ceramics for CSP Applications, SUPSI 26-6-2013, Paul Scherrer Institut.
15.
McDaniel
,
A.
, and
Ermanoski
,
I.
,
2017
, “
High Efficiency Solar Thermochemical Reactor for Hydrogen Production
,” DOE Annual Merit Review Project ID: PD113, Department of Energy Fuel Cell Technology Office, Washington, DC.
16.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
, pp. 958–969.
17.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
,
2009
, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
18.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p. 021008.
19.
Tan
,
T.
,
Chen
,
Y.
,
Chen
,
Z.
,
Siegel
,
N.
, and
Kolb
,
G. J.
,
2009
, “
Wind Effect on the Performance of Solid Particle Solar Receivers With and Without the Protection of an Aerowindow
,”
Sol. Energy
,
83
(
10
), pp.
1815
1827
.
20.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Pitz-Paal
,
R.
,
Röger
,
M.
, and
Müller-Steinhagen
,
H.
,
2015
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Sol. Energy
,
115
, pp.
505
517
.
21.
Lee
,
T.
,
Lim
,
S.
,
Shin
,
S.
,
Sadowski
,
D. L.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Al-Ansary
,
H.
,
2015
, “
Numerical Simulation of Particulate Flow in Interconnected Porous Media for Central Particle-Heating Receiver Applications
,”
Sol. Energy
,
113
, pp.
14
24
.
22.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B. B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
, pp. 1349–1359.
23.
Martinek
,
J.
, and
Ma
,
Z.
,
2015
, “
Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p. 051008.
24.
Martinek
,
J.
,
Wendelin
,
T.
, and
Ma
,
Z.
,
2018
, “
Predictive Performance Modeling Framework for a Novel Enclosed Particle Receiver Configuration and Application for Thermochemical Energy Storage
,”
Sol. Energy
,
166
, pp.
409
421
.
25.
Wu
,
W.
,
Trebing
,
D.
,
Amsbeck
,
L.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), pp. 133–149.
26.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J. L.
,
Garcia
,
R.
,
Boissière
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
, pp.
567
576
.https://doi.org/10.1016/j.ces.2013.08.051
27.
Ma
,
Z.
,
2017
, “
High-Temperature Thermochemical Storage With Redox-Stable Perovskites for Concentrating Solar Power, CRADA No. CRD-14-554
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5500-70024
.https://www.nrel.gov/docs/fy17osti/70024.pdf
28.
Wagner
,
M.
, 2018, “
SolarPILOT Program
,” National Renewable Energy Laboratory, Golden, CO, accessed Nov. 30, 2018, https://www.nrel.gov/csp/solarpilot.html
29.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor and Francis
,
New York
.
30.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
.
31.
Aavid Thermacore
, “
Heat Pipe Technology
,” Lancaster, PA, www.thermacore.com/thermal-basics/heat-pipe-technology.aspx
32.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
2nd ed.
,
Butterworth-Heinemann
,
Boston, MA
.
You do not currently have access to this content.