This paper presents the simulation and modeling of the concentrated solar power (CSP) plant for multipurpose applications at Borg El Arab in Egypt. The plant produces 1 MWe and 250 m3 of distilled water using steam turbine and electric generator. The purpose of using different applications is to improve the overall efficiency and the coefficient of performance of the plant. The trnsys simulation platform was used for simulating the thermal performance of the solar power and desalination plant covering the parabolic trough concentrator (PTC), storage tank with an integrated steam generator, a backup unit, steam turbine, electric generator, and two effects desalination unit. The temperature and energy profiles of the plant were investigated for the PTC, steam generator and the electric generator. The results prove that the simulation could be used to support the operation of the CSP plant and for improving the performance of the cogeneration plant at Borg El Arab.

References

References
1.
Price
,
H.
, and
Carpenter
,
S.
,
1999
, “
The Potential for Low-Cost Concentrating Solar Power Systems
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/CP-550-46649
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.7018&rep=rep1&type=pdf
2.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
3.
Binotti
,
M.
,
Zhu
,
G.
,
Gray
,
A.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2013
, “
Geometric Analysis of Three-Dimensional Effects of Parabolic Trough Collectors
,”
Sol. Energy
,
88
, pp.
88
96
.
4.
Clark
,
J. A.
,
1982
, “
An Analysis of the Technical and Economic Performance of a Parabolic Trough Concentrator for Solar Industrial Process Heat Application
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1427
1438
.
5.
Pacio
,
J.
, and
Wetzel
,
T.
,
2013
, “
Assessment of Liquid Metal Technology Status and Research Paths for Their Use as Efficient Heat Transfer Fluids in Solar Central Receiver Systems
,”
Sol. Energy
,
93
, pp.
11
22
.
6.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
53
.
7.
Wang
,
Y.
,
Liu
,
Q.
,
Lei
,
J.
, and
Jin
,
H.
,
2014
, “
A Three-Dimensional Simulation of a Parabolic Trough Solar Collector System Using Molten Salt as Heat Transfer Fluid
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
462
476
.
8.
Piemonte
,
V.
,
De Falco
,
M.
,
Tarquini
,
P.
, and
Giaconia
,
A.
,
2011
, “
Life Cycle Assessment of a High Temperature Molten Salt Concentrated Solar Power Plant
,”
Sol. Energy
,
85
(
5
), pp.
1101
1108
.
9.
Edenburn
,
M. W.
,
1976
, “
Performance Analysis of a Cylindrical Parabolic Focusing Collector and Comparison With Experimental Results
,”
Sol. Energy
,
18
(
5
), pp.
437
444
.
10.
Biencinto
,
M.
,
González
,
L.
, and
Valenzuela
,
L.
,
2016
, “
A Quasi-Dynamic Simulation Model for Direct Steam Generation in Parabolic Troughs Using TRNSYS
,”
Appl. Energy
,
161
, pp.
133
142
.
11.
Soares
,
J.
, and
Oliveira
,
A. C.
,
2017
, “
Numerical Simulation of a Hybrid Concentrated Solar Power/Biomass Mini Power Plant
,”
Appl. Therm. Eng.
,
111
, pp.
1378
1386
.
12.
El-Nashar
,
A. M.
,
1989
, “
Performance of the Solar Desalination Plant at Abu Dhabi
,”
Desalination
,
72
(
3
), pp.
405
424
.
13.
Servert
,
J. F.
,
Cerrajero
,
E.
, and
Fuentealba
,
E. L.
,
2016
, “
Synergies of Solar Energy Use in the Desalination of Seawater: A Case Study in Northern Synergies of Solar Energy Use in the Desalination of Seawater: A Case Study in Northern Chile
,”
AIP Conf. Proc.
1734
(
1
), p.
140002
.
14.
Palenzuela
,
P.
,
Zaragoza
,
G.
,
Alarcón
,
D.
, and
Blanco
,
J.
,
2011
, “
Simulation and Evaluation of the Coupling of Desalination Units to Parabolic-Trough Solar Power Plants in the Mediterranean Region
,”
Desalination
,
281
, pp.
379
387
.
15.
Gaggiolia
,
W.
,
Fabrizia
,
F.
,
Tarquinia
,
P.
, and
Rinaldia
,
L.
,
2015
, “
Experimental Validation of the Innovative Thermal Energy Storage Based on an Integrated System “Storage Tank/Steam Generator
,”
Energy Procedia
,
69
, pp.
822
831
.
17.
Klein, S. A.
, and University of Wisconsin-Madison, 2000,
TRNSYS, a Transient System Simulation Program
, Solar Energy Laboratory, University of Wisconsin-Madison, Madison, WI.
18.
Duffie
,
J. A.
, and
Backman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
Wiley
, New York.
You do not currently have access to this content.